Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Inverse Design of Anisotropic Nanostructures using modern Deep Learning methods
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. (Ultrafast Nanoscience)
2024 (Engelska)Självständigt arbete på avancerad nivå (yrkesexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

 Nanophotonic and plasmonic research have seen many breakthroughs lately which has created a demand for automated design algorithms to optimize optical elements at the nanometer scale. This work focuses on plasmonic nanostructures that are small metal particles interacting with electromagnetic radiation on length scales typically less than the wavelength. Plasmonic effects from nanostructures are used for enhancing and manipulating electromagnetic fields at the nanometer scale which have seen many applications in sensing requiring an ultra-high sensitivity and a small resolution. This work is about how deep learning methods can be used for designing plasmonic gold nanostructures. In particular, we investigate how convolutional neural networks can be used to predict the optical properties of nanostructures and how conditional generative adversarial networks (cGAN) can be used for designing structures with desired optical properties. The data in this work consist of images with differently shaped nanostructures and the corresponding spectral data for the scattering cross section, the absorption cross section, the polarization rotation and the polarization ellipticity. Utilizing the convolutional EfficientNet architectures, we train a forward model to predict the spectral data of anisotropically shaped nanostructures with images of the structure shape as input. We achieve a mean squared error of 2.5 × 10−4, 2.5 ×10−4, 6.0 ×10−4, and 4.9 ×10−4 respectively for each variable which agrees with the literature for similar problems. For the inverse design models, we show that label projection can be used to improve the results of two common GAN architectures in combination with a novel label embedding network. We use the Wasserstein GAN method with gradient penalty for training the models to generate images of nanostructure shapes conditioned on spectral data. The best model achieves a pixelwise mean absolute error of 4.9×10−3 and an estimated spectral mean absolute error of 8.4×10−3 between original and generated images when trained on a dataset containing cylindrical dimer structures. Furthermore, we have shown that the pixelwise mean absolute error is reduced when more conditional input variables are added to the model and that the model can learn different nanostructure shapes when trained on a large dataset containing different anisotropic gold nanostructure shapes. The best pixelwise mean absolute error found is 1.1×10−2 and the estimated spectral mean absolute error is 1.7 × 10−2 on the full dataset using all available input data.

Ort, förlag, år, upplaga, sidor
2024. , s. 42
Nyckelord [en]
Nanophotonics, Plasmonics, Deep Learning, Inverse design
Nationell ämneskategori
Den kondenserade materiens fysik Atom- och molekylfysik och optik
Identifikatorer
URN: urn:nbn:se:umu:diva-226382OAI: oai:DiVA.org:umu-226382DiVA, id: diva2:1871575
Ämne / kurs
Examensarbete i teknisk fysik
Utbildningsprogram
Civilingenjörsprogrammet i Teknisk fysik
Handledare
Examinatorer
Tillgänglig från: 2024-06-17 Skapad: 2024-06-17 Senast uppdaterad: 2024-06-17Bibliografiskt granskad

Open Access i DiVA

fulltext(7156 kB)286 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 7156 kBChecksumma SHA-512
0b935f16b3499843cf5bf29c686e1e8b9b5b62da89c5f671f9ca541155d25f6a5f4cb7fea6692ad955fea09d1a4fe3df15f7232e8c675d6395604d117a7d3320
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för fysik
Den kondenserade materiens fysikAtom- och molekylfysik och optik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 287 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 442 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf