Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Carbon-aware Scheduling in Kubernetes
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2024 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

In recent years, escalating concerns over environmental sustainability have highlighted the urgent need to address excessive carbon emissions, which drive climate change and its detrimental effects, including severe weather, food shortages, and increased poverty. This thesis explores the implementation of carbon-aware scheduling within a Kubernetes cluster, aiming to minimize carbon emissions, and evaluating how the performance of the system is affected. Kubernetes, an open-source platform for automating the deployment, scaling, and management of containerized applications, offers a promising framework for integrating carbon-aware strategies. With the increase in the use of computing power, data centers have become a significant contributor to global carbon emissions due to their considerable energy consumption. By integrating carbon-aware strategies into Kubernetes, this study investigates the potential for reducing the carbon footprint of microservice-based applications. Microservices is an architectural style where the application is divided into small, independent services, each handling a specific function. This allows for greater flexibility, scalability, and ease of maintenance. This thesis proposes and develops a carbon-aware scheduler that tests various applications under different traffic loads to assess its effectiveness in reducing carbon emissions. The scheduler optimally allocates workloads to different geographical locations based on carbon intensity, aiming to leverage multiple data centers across the globe. Performing experiments within a controlled testbed environment demonstrates that the scheduler is able to reduce emissions effectively, up to 28.58%, although with trade-offs in response times and system performance during migration phases. This thesis contributes to the emerging field of green computing by providing a practical approach to carbon-aware scheduling in cloud environments, highlighting the balance between environmental impact and performance metrics. 

Ort, förlag, år, upplaga, sidor
2024.
Serie
UMNAD ; 1495
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-227248OAI: oai:DiVA.org:umu-227248DiVA, id: diva2:1878128
Externt samarbete
Elastisys
Handledare
Examinatorer
Tillgänglig från: 2024-06-27 Skapad: 2024-06-26 Senast uppdaterad: 2024-06-27Bibliografiskt granskad

Open Access i DiVA

fulltext(1921 kB)409 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1921 kBChecksumma SHA-512
c945ccffff2cceaaccb64d861e2ced7d602d715978fe8ab0f06bda88ef500e7099f99d1f6716d376bd78a2ae0bd5c55b620a6428e07837be65dc5b12c378dd71
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 409 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1026 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf