Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Time Series Databases For Production Machinery
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2024 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 300 hpStudentuppsats (Examensarbete)
Abstract [en]

A time series database is a type of software system that has been optimized for storing and reading time series data. This type of data is defined as a series of datapoints that are individually coupled with a timestamp. Early adopters of the timeseries database were industrial applications that were in need efficiently storingsensory data such as temperature and flow. These types of niche databases became commonly labeled as process/data historians or simply historians for short. MOPSsys, a company in Örnsköldsvik, has been developing historians for 40 years with their most recent one being MOPS HISTORIAN, which is operated by over 120 mills across 20 countries. For process historians, read and write speeds are crucial in order to provide fast and responsive trends, curves and profiles for operators and engineers. Therefore, it is not uncommon for these historians to relax some typical database requirements such as ACID (Atomic, Consistent, Isolated, Durable) transactions to increase performance. One of the crucial parts of designing a process historian is to decide on how data is stored for optimalperformance. This leads to an interesting discussion about how the data should be stored on disk for optimal historian performance. This thesis explores andtests different storage formats suited for historians such as the current storage format in MOPS Historian, Log-Structured Merge trees (LSM) and Indexed Sequential Access Methods (ISAM). The benchmarks include basic reads and writes with heavy emphasis put on range queries. These storage formats are also benchmarked against other databases that exist on the market, those being PostgreSQL and TimescaleDB, a PostgreSQL extension. Results from testing these candidates showed that PostgreSQL and TimescaleDB performed the best and that ISAM and LSM had different strengths and weaknesses depending on the scenario.

Ort, förlag, år, upplaga, sidor
2024.
Serie
UMNAD ; 1496
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-227253OAI: oai:DiVA.org:umu-227253DiVA, id: diva2:1878222
Externt samarbete
MOPSsys AB
Utbildningsprogram
Civilingenjörsprogrammet i Teknisk datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2024-06-27 Skapad: 2024-06-26 Senast uppdaterad: 2024-06-27Bibliografiskt granskad

Open Access i DiVA

fulltext(656 kB)138 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 656 kBChecksumma SHA-512
fcdfd590c6a87e5cd4a4dda431baeccb1eae3a8ad7a11889bdc4a73a10f4675705695f368a05290422648a89ade3d86e838af3f9d8933aa98472983b69d7de82
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 138 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 439 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf