umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Vibrational models for a crystal with 36 water molecules in the unit cell: IR spectra from experiment and calculation
Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, S-751 21 Uppsala, Sweden .
Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, S-751 21 Uppsala, Sweden .
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, S-751 21 Uppsala, Sweden .
2015 (Engelska)Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 17, nr 16, 10520-10531 s.Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present experimental and calculated IR spectra of the water molecules in crystalline aluminium nitrate nonahydrate and a method to generate a realistic and well resolved isotope-isolated spectrum from periodic DFT calculations. Our sample crystal contains 18 structurally different OH groups and is a perfect benchmark compound to validate vibrational models and the structure-property relationship of bound water molecules. FTIR spectra (ATR technique) were recorded for the Al(NO3)(3)center dot 9H(2)O crystal at 138 and 298 K, and due to a multitude of OH contributions and couplings, they are naturally poorly resolved and yield a broad OH band in the range 3500 to 2700 cm(-1) at both temperatures. Isotope-isolated IR spectra have the clear advantage over non-deuterated spectra that they are better resolved and easier to interpret - here we have extended the experimental study by simulating the isotope-isolated IR spectrum, using PBE-D2 and auxiliary B3LYP calculations and an anharmonic OH vibrational model. We find excellent agreement between the shapes and frequency ranges of the experimental and calculated OH spectral bands. We make use of four different vibrational models: (i) a harmonic lattice-dynamical model for the isotope-isolated crystal with 1 H among 71 D, (ii) a harmonic lattice-dynamical model for the normal undeuterated crystal involving all the vibrational couplings, (iii) a harmonic 1-dimensional uncoupled OH vibrational model, and (iv) the anharmonic variant of the previous model, which yields the final spectrum. We also use the individual frequencies, resolved by the calculations, to quantify new or extended relationships involving OH frequencies versus local electric fields and H-bond distances. We explore the correlation between OH frequency and molecular dipole moment for bound water molecules.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2015. Vol. 17, nr 16, 10520-10531 s.
Nationell ämneskategori
Kemi
Identifikatorer
URN: urn:nbn:se:umu:diva-103180DOI: 10.1039/c5cp00390cISI: 000352707200024PubMedID: 25805117OAI: oai:DiVA.org:umu-103180DiVA: diva2:814079
Tillgänglig från: 2015-05-26 Skapad: 2015-05-18 Senast uppdaterad: 2017-12-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Boily, Jean-Francois
Av organisationen
Kemiska institutionen
I samma tidskrift
Physical Chemistry, Chemical Physics - PCCP
Kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 809 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf