Umeå universitets logga

umu.sePublikationer
Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 10/12-2024, kl 12.00-13.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Extensions of the kernel method of test score equating
Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik.
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis makes contributions within the area of test score equating and specifically kernel equating. The first paper of this thesis studies the estimation of the test score distributions needed in kernel equating. There are currently two families of models implemented within kernel equating for this purpose, namely log-linear models and item response theory models. The impact of model selection criteria for these models on the equated scores are studied using both empirical and simulated data.

The second paper focuses on the continuization of the estimated score distributions, where different bandwidth selection methods are studied. The study considers multiple data collection designs, sample sizes and score distributions and investigates how large impact the bandwidth selection has on the equated scores.

When the test groups differ in their ability distributions it is necessary to adjust for such differences to make fair comparisons possible. The most common way of adjusting for ability imbalance is by using items that are common for both test forms, known as anchor items. If no such items are available, it has been suggested to use background information about the test-takers instead. However, when the covariate vector of background information increases, the combination of covariates with no observations tends to increase as well. The third paper of this thesis therefore suggests to transform the covariate vector into a scalar propensity score. Two equating estimators are suggested under this setting and the standard error of equating (SEE) for both estimators are given.

The SEE for kernel equating has previously been derived using the delta method. The fourth paper revisits the Bahadur representation of sample quantiles to derive the SEE. Both methods of calculating the SEE are compared, and it is shown that they are equivalent for all common data collection designs when the terms of the Bahadur SEE are estimated using Taylor expansions. An implementation of an alternative estimator of the Bahadur SEE for which the equivalence result does not hold is also included to illustrate when the two methods differ.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet , 2019. , s. 25
Serie
Statistical studies, ISSN 1100-8989 ; 55
Nyckelord [en]
Test equating, Nonequivalent groups, Standard error of equating, bandwidth selection, log-linear models, item response theory
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-166359ISBN: 978-91-7855-126-2 (tryckt)OAI: oai:DiVA.org:umu-166359DiVA, id: diva2:1378833
Disputation
2020-01-17, S213H, Samhällsvetarhuset, Umeå, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-12-18 Skapad: 2019-12-14 Senast uppdaterad: 2019-12-17Bibliografiskt granskad
Delarbeten
1. Model Selection for Presmoothing of Bivariate Score Distributions in Kernel Equating
Öppna denna publikation i ny flik eller fönster >>Model Selection for Presmoothing of Bivariate Score Distributions in Kernel Equating
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
urn:nbn:se:umu:diva-166355 (URN)
Tillgänglig från: 2019-12-14 Skapad: 2019-12-14 Senast uppdaterad: 2019-12-17
2. How Important is the Choice of Bandwidth in Kernel Equating?
Öppna denna publikation i ny flik eller fönster >>How Important is the Choice of Bandwidth in Kernel Equating?
2021 (Engelska)Ingår i: Applied psychological measurement, ISSN 0146-6216, E-ISSN 1552-3497, Vol. 45, nr 7-8, s. 518-535Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Kernel equating uses kernel smoothing techniques to continuize the discrete score distributions when equating test scores from an assessment test. The degree of smoothness of the continuous approximations is determined by the bandwidth. Four bandwidth selection methods are currently available for kernel equating, but no thorough comparison has been made between these methods. The overall aim is to compare these four methods together with two additional methods based on cross-validation in a simulation study. Both equivalent and non-equivalent group designs are used and the number of test takers, test length, and score distributions are all varied. The results show that sample size and test length are important factors for equating accuracy and precision. However, all bandwidth selection methods perform similarly with regards to the mean squared error and the differences in terms of equated scores are small, suggesting that the choice of bandwidth is not critical. The different bandwidth selection methods are also illustrated using real testing data from a college admissions test. Practical implications of the results from the simulation study and the empirical study are discussed.

Ort, förlag, år, upplaga, sidor
Sage Publications, 2021
Nyckelord
kernel equating, continuization, bandwidth selection, evaluation
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
urn:nbn:se:umu:diva-166356 (URN)10.1177/01466216211040486 (DOI)000710246400001 ()2-s2.0-85117532685 (Scopus ID)
Anmärkning

Originally included in thesis in manuscript form. 

Tillgänglig från: 2019-12-14 Skapad: 2019-12-14 Senast uppdaterad: 2021-12-17Bibliografiskt granskad
3. Kernel Equating Using Propensity Scores for Nonequivalent Groups
Öppna denna publikation i ny flik eller fönster >>Kernel Equating Using Propensity Scores for Nonequivalent Groups
2019 (Engelska)Ingår i: Journal of educational and behavioral statistics, ISSN 1076-9986, E-ISSN 1935-1054, Vol. 44, nr 4, s. 390-414Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

When equating two test forms, the equated scores will be biased if the test groups differ in ability. To adjust for the ability imbalance between nonequivalent groups, a set of common items is often used. When no common items are available, it has been suggested to use covariates correlated with the test scores instead. In this article, we reduce the covariates to a propensity score and equate the test forms with respect to this score. The propensity score is incorporated within the kernel equating framework using poststratification and chained equating. The methods are evaluated using real college admissions test data and through a simulation study. The results show that propensity scores give an increased equating precision in comparison with the equivalent groups design and a smaller mean squared error than by using the covariates directly. Practical implications are also discussed.

Ort, förlag, år, upplaga, sidor
Sage Publications, 2019
Nyckelord
kernel equating, background variables, nonequivalent groups, NEC design, propensity scores
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
urn:nbn:se:umu:diva-157869 (URN)10.3102/1076998619838226 (DOI)000486857200001 ()2-s2.0-85063946240 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2014-578
Tillgänglig från: 2019-04-04 Skapad: 2019-04-04 Senast uppdaterad: 2023-03-23Bibliografiskt granskad
4. Revisiting the Bahadur Representation of Sample Quantiles for the Standard Error of Kernel Equating
Öppna denna publikation i ny flik eller fönster >>Revisiting the Bahadur Representation of Sample Quantiles for the Standard Error of Kernel Equating
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
urn:nbn:se:umu:diva-166357 (URN)
Tillgänglig från: 2019-12-14 Skapad: 2019-12-14 Senast uppdaterad: 2019-12-17

Open Access i DiVA

fulltext(341 kB)509 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 341 kBChecksumma SHA-512
37f66a22c6b795ac5cbb34947faa5a920276e61a2c06ee2f9c3dc79e0d8d2572c5f648d8ae68b736636cc14fb57e25fb0938bef18f0dd4987a9cc43d75d92615
Typ fulltextMimetyp application/pdf
spikblad(244 kB)66 nedladdningar
Filinformation
Filnamn SPIKBLAD01.pdfFilstorlek 244 kBChecksumma SHA-512
c3c58a1bc7068ce0cfec70253c113b98a0fa91c5b0053d59808034208100f0168c3e6b3ab675004b7bf94917436be923c79c8e3613159b0b6d028d493258d87c
Typ spikbladMimetyp application/pdf

Person

Wallin, Gabriel

Sök vidare i DiVA

Av författaren/redaktören
Wallin, Gabriel
Av organisationen
Statistik
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 509 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 888 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf