umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Autonomous Object Category Learning for Service Robots Using Internet Resources
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2016 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

With the developments in the field of Artificial Intelligence (AI), robots are becoming smarter, more efficient and capable of doing more dififcult tasks than before. Recent progress in Machine Learning has revolutionized the field of AI. Rather than performing pre-programmed tasks, nowadays robots are learning things, and becoming more autonomous along the way. However, in most of the cases, robots need a certain level of human assistance to learn something. To recognize or classify daily objects is a very important skill that a service robot should possess. In this research work, we have implemented a fully autonomous object category learning system for service robots, where the robot uses internet resources to learn object categories. It gets the name of an unknown object by performing reverse image search in the internet search engines, and applying a verification strategy afterwards. Then the robot retrieves a number of images of that object from internet and use those to generate training data for learning classifiers. The implemented system is tested in actual domestic environment. The classification performance is examined against some object categories from a benchmark dataset. The system performed decently with 78:40% average accuracy on ve object categories taken from the benchmark dataset and showed promising results in real domestic scenarios. There are existing research works that deal with object category learning for robots using internet images. But those works use Human-in-the-loop models, where humans assist the robot to get the object name for using it as a search cue to retrieve training images from internet. Our implemented system eliminates the necessity of human assistance by making the task of object name determination automatic. This facilitates the whole process of learning object categories with full autonomy, which is the main contribution of this research.

Ort, förlag, år, upplaga, sidor
2016. , s. 58
Serie
UMNAD ; 1064
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:umu:diva-128299OAI: oai:DiVA.org:umu-128299DiVA, id: diva2:1051138
Utbildningsprogram
Masterprogrammet i robotik och reglerteknik
Handledare
Examinatorer
Tillgänglig från: 2016-12-01 Skapad: 2016-12-01 Senast uppdaterad: 2016-12-01Bibliografiskt granskad

Open Access i DiVA

fulltext(11081 kB)221 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 11081 kBChecksumma SHA-512
b89c4247aa37f5841bb7c6c38adb810883c08f23ab39db9c8fb5dcccf1650091fc1dc42c34c665450d7a7d48a8ed1948c1a056d4111698128cd1abf28a6b4826
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 221 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1024 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf