umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Toward a Low-Cost Artificial Leaf: Driving Carbon-Based and Bifunctional Catalyst Electrodes with Solution-Processed Perovskite Photovoltaics
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Advanced Energy Materials, ISSN 1614-6832, Vol. 6, nr 20, s. 1-10, artikkel-id 1600738Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Molecular hydrogen can be generated renewably by water splitting with an artificial-leaf device, which essentially comprises two electrocatalyst electrodes immersed in water and powered by photovoltaics. Ideally, this device should operate efficiently and be fabricated with cost-efficient means using earth-abundant materials. Here, a lightweight electrocatalyst electrode, comprising large surface-area NiCo2O4 nanorods that are firmly anchored onto a carbon-paper current collector via a dense network of nitrogen-doped carbon nanotubes is presented. This electrocatalyst electrode is bifunctional in that it can efficiently operate as both anode and cathode in the same alkaline solution, as quantified by a delivered current density of 10 mA cm(-2) at an overpotential of 400 mV for each of the oxygen and hydrogen evolution reactions. By driving two such identical electrodes with a solution-processed thin-film perovskite photovoltaic assembly, a wired artificial-leaf device is obtained that features a Faradaic H-2 evolution efficiency of 100%, and a solar-to-hydrogen conversion efficiency of 6.2%. A detailed cost analysis is presented, which implies that the material-payback time of this device is of the order of 100 days.

sted, utgiver, år, opplag, sider
Wiley-Blackwell, 2016. Vol. 6, nr 20, s. 1-10, artikkel-id 1600738
Emneord [en]
artificial-leaf devices, bifunctional electrocatalyst, carbon paper, nitrogen-doped carbon nanotubes, perovskite photovoltaics
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-128457DOI: 10.1002/aenm.201600738ISI: 000387136300001OAI: oai:DiVA.org:umu-128457DiVA, id: diva2:1063970
Tilgjengelig fra: 2017-01-11 Laget: 2016-12-05 Sist oppdatert: 2019-10-17bibliografisk kontrollert

Open Access i DiVA

fulltext(1451 kB)186 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1451 kBChecksum SHA-512
f9342ec6bdc536610a9c2796931cf325b839203e186637d2029b2a6b861a2a14f62f15522776795a653e1c44cef18a55302fd703507a1d02064fd0bc7eb4e19d
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Sharifi, TivaLarsen, ChristianWang, JiaKwong, Wai LingGracia-Espino, EduardoMercier, GuillaumeMessinger, JohannesWågberg, ThomasEdman, Ludvig

Søk i DiVA

Av forfatter/redaktør
Sharifi, TivaLarsen, ChristianWang, JiaKwong, Wai LingGracia-Espino, EduardoMercier, GuillaumeMessinger, JohannesWågberg, ThomasEdman, Ludvig
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 186 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 559 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf