umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Landscape relatedness: detecting contemporary fine-scale spatial structure in wild populations
Vise andre og tillknytning
2017 (engelsk)Inngår i: Landscape Ecology, ISSN 0921-2973, E-ISSN 1572-9761, Vol. 32, nr 1, s. 181-194Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Methods for detecting contemporary, fine-scale population genetic structure in continuous populations are scarce. Yet such methods are vital for ecological and conservation studies, particularly under a changing landscape. Here we present a novel, spatially explicit method that we call landscape relatedness (LandRel). With this method, we aim to detect contemporary, fine-scale population structure that is sensitive to spatial and temporal changes in the landscape. We interpolate spatially determined relatedness values based on SNP genotypes across the landscape. Interpolations are calculated using the Bayesian inference approach integrated nested Laplace approximation. We empirically tested this method on a continuous population of brown bears (Ursus arctos) spanning two counties in Sweden. Two areas were identified as differentiated from the remaining population. Further analysis suggests that inbreeding has occurred in at least one of these areas. LandRel enabled us to identify previously unknown fine-scale structuring in the population. These results will help direct future research efforts, conservation action and aid in the management of the Scandinavian brown bear population. LandRel thus offers an approach for detecting subtle population structure with a focus on contemporary, fine-scale analysis of continuous populations.

sted, utgiver, år, opplag, sider
2017. Vol. 32, nr 1, s. 181-194
Emneord [en]
Continuous distribution, Non-invasive genetic sampling, INLA, Ursus arctos, Inbreeding, Conservation
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-131654DOI: 10.1007/s10980-016-0434-2ISI: 000392301500013OAI: oai:DiVA.org:umu-131654DiVA, id: diva2:1076983
Tilgjengelig fra: 2017-02-24 Laget: 2017-02-24 Sist oppdatert: 2018-06-09bibliografisk kontrollert

Open Access i DiVA

fulltext(1991 kB)83 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1991 kBChecksum SHA-512
d8400c481f5dc46bdaad966f47d403f09bc82f48600732f715819783187e2448912cef1e68b968089a8557cb826a82940fc1231e3302d0222dce3cd6e4544db1
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Street, Nathaniel R.

Søk i DiVA

Av forfatter/redaktør
Street, Nathaniel R.
Av organisasjonen
I samme tidsskrift
Landscape Ecology

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 83 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 616 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf