umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A numerical study of nonlinear dispersive wave models with SpecTraVVave
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2017 (Engelska)Ingår i: Electronic Journal of Differential Equations, ISSN 1550-6150, E-ISSN 1072-6691, s. 1-23, artikel-id 62Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In nonlinear dispersive evolution equations, the competing effects of nonlinearity and dispersion make a number of interesting phenomena possible. In the current work, the focus is on the numerical approximation of traveling-wave solutions of such equations. We describe our efforts to write a dedicated Python code which is able to compute traveling-wave solutions of nonlinear dispersive equations in a very general form. The Spec TraVVave code uses a continuation method coupled with a spectral projection to compute approximations of steady symmetric solutions of this equation. The code is used in a number of situations to gain an understanding of traveling-wave solutions. The first case is the Whitham equation, where numerical evidence points to the conclusion that the main bifurcation branch features three distinct points of interest, namely a turning point, a point of stability inversion, and a terminal point which corresponds to a cusped wave. The second case is the so-called modified Benjamin-Ono equation where the interaction of two solitary waves is investigated. It is found that two solitary waves may interact in such a way that the smaller wave is annihilated. The third case concerns the Benjamin equation which features two competing dispersive operators. In this case, it is found that bifurcation curves of periodic traveling-wave solutions may cross and connect high up on the branch in the nonlinear regime.

Ort, förlag, år, upplaga, sidor
2017. s. 1-23, artikel-id 62
Nyckelord [en]
Traveling Waves, nonlinear dispersive equations, bifurcation, solitary waves
Nationell ämneskategori
Matematisk analys
Identifikatorer
URN: urn:nbn:se:umu:diva-133774ISI: 000395717000001OAI: oai:DiVA.org:umu-133774DiVA, id: diva2:1092326
Tillgänglig från: 2017-05-02 Skapad: 2017-05-02 Senast uppdaterad: 2018-06-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Verdier, Olivier

Sök vidare i DiVA

Av författaren/redaktören
Verdier, Olivier
Av organisationen
Institutionen för matematik och matematisk statistik
I samma tidskrift
Electronic Journal of Differential Equations
Matematisk analys

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 83 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf