umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Spatially resolved transcriptome profiling in model plant species
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
Vise andre og tillknytning
2017 (engelsk)Inngår i: Nature Plants, ISSN 2055-026X, Vol. 3, nr 6, artikkel-id 17061Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Understanding complex biological systems requires functional characterization of specialized tissue domains. However, existing strategies for generating and analysing high-throughput spatial expression profiles were developed for a limited range of organisms, primarily mammals. Here we present the first available approach to generate and study highresolution, spatially resolved functional profiles in a broad range of model plant systems. Our process includes highthroughput spatial transcriptome profiling followed by spatial gene and pathway analyses. We first demonstrate the feasibility of the technique by generating spatial transcriptome profiles from model angiosperms and gymnosperms microsections. In Arabidopsis thaliana we use the spatial data to identify differences in expression levels of 141 genes and 189 pathways in eight inflorescence tissue domains. Our combined approach of spatial transcriptomics and functional profiling offers a powerful new strategy that can be applied to a broad range of plant species, and is an approach that will be pivotal to answering fundamental questions in developmental and evolutionary biology.

sted, utgiver, år, opplag, sider
Nature Publishing Group, 2017. Vol. 3, nr 6, artikkel-id 17061
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-138048DOI: 10.1038/nplants.2017.61ISI: 000406036800002PubMedID: 28481330OAI: oai:DiVA.org:umu-138048DiVA, id: diva2:1130595
Tilgjengelig fra: 2017-08-10 Laget: 2017-08-10 Sist oppdatert: 2019-02-19bibliografisk kontrollert
Inngår i avhandling
1. Using systems genetics to explore the complexity of leaf shape variation in Populus tremula
Åpne denne publikasjonen i ny fane eller vindu >>Using systems genetics to explore the complexity of leaf shape variation in Populus tremula
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Leaves are essential for sustaining humanity as they function as the energy and oxygen-producing organ of plants. Intensive research on physiological processes has contributed immensely to our understanding of the function of leaves. However, comparatively little is known about how leaf size and shape is determined. The aim of my PhD was to assay leaf shape variation among individuals of Populus tremula (European aspen) sampled across the distribution range of Sweden to characterize the genetic architecture underlying variation, including elucidating contributing molecular mechanisms.

In this PhD I employed an integrated systems genetics and systems biology approach to identify genetic components of variation and to assign biological function to these. We integrated population-wide data on leaf shape, gene expression and genome variation from a collection of P. tremula genotypes and used this to perform genome-wide association studies. We then integrated these results with a systems biology transcriptomics study of leaf development to provide developmental and biological context. We demonstrate that our developmental gene expression series captured known homologs of functionally characterized Arabidopsis thaliana genes and biological processes of importance during leaf development. In addition to these known genes of high importance, we also identified many novel candidate genes. Our systems genetics approach identified numerous genes with a potential role in leaf development that was supported by the developmental time series. From our association studies and population analyses we have shown that there are no large-effect loci contributing to variation in leaf shape and that highly ranked loci associated with leaf shape are primarily located in the regulatory regions of genes. Furthermore, we identified loci controlling variation in gene expression and sets of genes with significant differential expression between groups of genotypes with highly contrasting leaf shapes. We show that genes with significant associations influencing expression among genotypes are enriched in the periphery of the corresponding gene co-expression network and that they experience relaxed selective constraint. Taken together, these results suggest that leaf shape is a highly complex trait controlled by a large number of loci, each contributing only a small effect, that those loci likely act via modulation of gene expression and that they do not show signals of adaptive selection. In addition, we adapted and optimized the method of spatial transcriptomics for use in plant species. This method provides a transcriptome-wide in situ, spatially-resolved assay of transcript expression at high spatial resolution.

sted, utgiver, år, opplag, sider
Umeå: Umeå University, 2019. s. 60
Emneord
Populus, Arabidopsis, systems biology, systems genetics, spatial transcriptomics (ST), single nucleotide polymorphism (SNP), Genome wide associations study (GWAS), expression GWAS (eGWAS)
HSV kategori
Forskningsprogram
molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-156464 (URN)978-91-7601-879-8 (ISBN)
Disputas
2019-03-14, Lilla hörsalen, KB.E3.01, KBC-huset, Umeå, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-02-21 Laget: 2019-02-18 Sist oppdatert: 2019-02-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Giacomello, StefaniaTerebieniec, Barbara K.Mannapperuma, ChanakaStreet, Nathaniel

Søk i DiVA

Av forfatter/redaktør
Giacomello, StefaniaTerebieniec, Barbara K.Mannapperuma, ChanakaStreet, Nathaniel
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 278 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf