umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Novel risk genes for systemic lupus erythematosus predicted by random forest classification
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, artikel-id 6236Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Genome-wide association studies have identified risk loci for SLE, but a large proportion of the genetic contribution to SLE still remains unexplained. To detect novel risk genes, and to predict an individual's SLE risk we designed a random forest classifier using SNP genotype data generated on the "Immunochip" from 1,160 patients with SLE and 2,711 controls. Using gene importance scores defined by the random forest classifier, we identified 15 potential novel risk genes for SLE. Of them 12 are associated with other autoimmune diseases than SLE, whereas three genes (ZNF804A, CDK1, and MANF) have not previously been associated with autoimmunity. Random forest classification also allowed prediction of patients at risk for lupus nephritis with an area under the curve of 0.94. By allele-specific gene expression analysis we detected cis-regulatory SNPs that affect the expression levels of six of the top 40 genes designed by the random forest analysis, indicating a regulatory role for the identified risk variants. The 40 top genes from the prediction were overrepresented for differential expression in B and T cells according to RNA-sequencing of samples from five healthy donors, with more frequent over-expression in B cells compared to T cells.

Ort, förlag, år, upplaga, sidor
NATURE PUBLISHING GROUP , 2017. Vol. 7, artikel-id 6236
Nationell ämneskategori
Medicinsk genetik
Identifikatorer
URN: urn:nbn:se:umu:diva-138601DOI: 10.1038/s41598-017-06516-1ISI: 000406260100040PubMedID: 28740209OAI: oai:DiVA.org:umu-138601DiVA, id: diva2:1139743
Tillgänglig från: 2017-09-08 Skapad: 2017-09-08 Senast uppdaterad: 2018-06-09Bibliografiskt granskad

Open Access i DiVA

fulltext(2858 kB)98 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2858 kBChecksumma SHA-512
9db5d3c4b27c3806ad4e6448802b676e48192cb48f7dc4dc9d0067c48ea292fb3f2d94a8c028c2701f503b5a7c81f6a35e6a793c820166e413e6000c6b6fc910
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Bengtsson, ChristineDahlqvist, Solbritt Rantapaa

Sök vidare i DiVA

Av författaren/redaktören
Bengtsson, ChristineDahlqvist, Solbritt Rantapaa
Av organisationen
Reumatologi
I samma tidskrift
Scientific Reports
Medicinsk genetik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 98 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 645 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf