Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2
Linnéuniversitetet, Institutionen för biologi och miljö (BOM). (EcoChange)
Linnéuniversitetet, Institutionen för biologi och miljö (BOM).ORCID iD: 0000-0002-8779-6464
Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
Show others and affiliations
2016 (English)In: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 6, no 5, p. 483-487Article in journal, Letter (Refereed) Published
Abstract [en]

Human-induced ocean acidification impacts marine life. Marine bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes1; hence, understanding their performance under projected climate change scenarios is crucial for assessing ecosystem functioning. Whereas genetic and physiological responses of phytoplankton to ocean acidification are being disentangled2, 3, 4, corresponding functional responses of bacterioplankton to pH reduction from elevated CO2 are essentially unknown. Here we show, from metatranscriptome analyses of a phytoplankton bloom mesocosm experiment, that marine bacteria responded to lowered pH by enhancing the expression of genes encoding proton pumps, such as respiration complexes, proteorhodopsin and membrane transporters. Moreover, taxonomic transcript analysis showed that distinct bacterial groups expressed different pH homeostasis genes in response to elevated CO2. These responses were substantial for numerous pH homeostasis genes under low-chlorophyll conditions (chlorophyll a <2.5 μg l−1); however, the changes in gene expression under high-chlorophyll conditions (chlorophyll a >20 μg l−1) were low. Given that proton expulsion through pH homeostasis mechanisms is energetically costly, these findings suggest that bacterioplankton adaptation to ocean acidification could have long-term effects on the economy of ocean ecosystems.

Place, publisher, year, edition, pages
Macmillan Publishers Ltd., 2016. Vol. 6, no 5, p. 483-487
National Category
Microbiology Ecology Climate Research
Research subject
Ecology, Microbiology
Identifiers
URN: urn:nbn:se:umu:diva-139351DOI: 10.1038/nclimate2914ISI: 000375125200015Scopus ID: 2-s2.0-84964949342OAI: oai:DiVA.org:umu-139351DiVA, id: diva2:1140227
Available from: 2016-02-29 Created: 2017-09-11 Last updated: 2018-06-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Lundin, DanielHolmfeldt, KarinDopson, MarkPinhassi, Jarone

Search in DiVA

By author/editor
Lundin, DanielHolmfeldt, KarinDopson, MarkPinhassi, Jarone
In the same journal
Nature Climate Change
MicrobiologyEcologyClimate Research

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 439 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf