umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of a Vocational Rehabilitation: Using a Proxy for Unobserved Confounders
Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik. (Stat4Reg)
Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik. (Stat4Reg)
Department of Statistics, Uppsala University.
The Public Employment Service, Stockholm.
Visa övriga samt affilieringar
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-139520OAI: oai:DiVA.org:umu-139520DiVA, id: diva2:1141646
Tillgänglig från: 2017-09-15 Skapad: 2017-09-15 Senast uppdaterad: 2018-06-09
Ingår i avhandling
1. Methods for improving covariate balance in observational studies
Öppna denna publikation i ny flik eller fönster >>Methods for improving covariate balance in observational studies
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Metoder för att förbättra jämförbarheten mellan två grupper i observationsstudier
Abstract [en]

This thesis contributes to the field of causal inference, where the main interest is to estimate the effect of a treatment on some outcome. At its core, causal inference is an exercise in controlling for imbalance (differences) in covariate distributions between the treated and the controls, as such imbalances otherwise can bias estimates of causal effects. Imbalance on observed covariates can be handled through matching, where treated and controls with similar covariate distributions are extracted from a data set and then used to estimate the effect of a treatment.

The first paper of this thesis describes and investigates a matching design, where a data-driven algorithm is used to discretise a covariate before matching. The paper also gives sufficient conditions for if, and how, a covariate can be discretised without introducing bias.

Balance is needed for unobserved covariates too, but is more difficult to achieve and verify. Unobserved covariates are sometimes replaced with correlated counterparts, usually referred to as proxy variables. However, just replacing an unobserved covariate with a correlated one does not guarantee an elimination of, or even reduction of, bias. In the second paper we formalise proxy variables in a causal inference framework and give sufficient conditions for when they lead to nonparametric identification of causal effects.

The third and fourth papers both concern estimating the effect an enhanced cooperation between the Swedish Social Insurance Agency and the Public Employment Service has on reducing sick leave. The third paper is a study protocol, where the matching design used to estimate this effect is described. The matching was then also carried out in the study protocol, before the outcome for the treated was available, ensuring that the matching design was not influenced by any estimated causal effects. The third paper also presents a potential proxy variable for unobserved covariates, that is used as part of the matching. The fourth paper then carries out the analysis described in the third paper, and uses an instrumental variable approach to test for unobserved confounding not captured by the supposed proxy variable.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2017. s. 29
Serie
Statistical studies, ISSN 1100-8989 ; 52
Nyckelord
causal effect, coarsening, discretisation, proxy variables, register study, swedish social insurance agency, unobserved variables
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
urn:nbn:se:umu:diva-139523 (URN)978-91-7601-751-7 (ISBN)
Disputation
2017-10-10, Hörsal G, Humanisthuset, Umeå, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-09-19 Skapad: 2017-09-15 Senast uppdaterad: 2018-06-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Fowler, Philipde Luna, Xavier

Sök vidare i DiVA

Av författaren/redaktören
Fowler, Philipde Luna, Xavier
Av organisationen
Statistik
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 310 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf