umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identifying smartphone users based on their activity patterns via mobile sensing
Faculty of Telecom and Information Engineering, University of Engineering and Technology, Taxila, Punjab, Pakistan.
Faculty of Telecom and Information Engineering, University of Engineering and Technology, Taxila, Punjab, Pakistan.
School of Architecture, Computing and Engineering, University of East London, United Kingdom.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Procedia Computer Science, ISSN 1877-0509, E-ISSN 1877-0509, Vol. 113, s. 202-209Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Smartphones are ubiquitous devices that enable users to perform many of their routine tasks anytime and anywhere. With the advancement in information technology, smartphones are now equipped with sensing and networking capabilities that provide context-awareness for a wide range of applications. Due to ease of use and access, many users are using smartphones to store their private data, such as personal identifiers and bank account details. This type of sensitive data can be vulnerable if the device gets lost or stolen. The existing methods for securing mobile devices, including passwords, PINs and pattern locks are susceptible to many bouts such as smudge attacks. This paper proposes a novel framework to protect sensitive data on smartphones by identifying smartphone users based on their behavioral traits using smartphone embedded sensors. A series of experiments have been conducted for validating the proposed framework, which demonstrate its effectiveness.

Ort, förlag, år, upplaga, sidor
Elsevier, 2017. Vol. 113, s. 202-209
Nyckelord [en]
activity recognition, behavioral biometrics, continuous sensing, mobile device security, data privacy, mobile sensing, ubiquitous computing, user identification
Nationell ämneskategori
Datorsystem Signalbehandling Interaktionsteknik
Forskningsämne
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:umu:diva-139946DOI: 10.1016/j.procs.2017.08.349ISI: 000419236500025OAI: oai:DiVA.org:umu-139946DiVA, id: diva2:1144785
Konferens
The 8th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2017), September 18-20, 2017, Lund, Sweden.
Tillgänglig från: 2017-09-27 Skapad: 2017-09-27 Senast uppdaterad: 2018-06-09Bibliografiskt granskad

Open Access i DiVA

fulltext(1837 kB)188 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 1837 kBChecksumma SHA-512
0f1befab465d86107fe324dbf7879954b174d2a6cdc5a7ff8571613d98defee06e2369fa93335308ba355a6fd16280fe395ae8ed6913837191849ef1cf8a4d0b
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Ur Rèhman, Shafiq

Sök vidare i DiVA

Av författaren/redaktören
Ur Rèhman, Shafiq
Av organisationen
Institutionen för tillämpad fysik och elektronik
I samma tidskrift
Procedia Computer Science
DatorsystemSignalbehandlingInteraktionsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 189 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 313 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf