umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sensitive and broadband measurement of dispersion in a cavity using a Fourier transform spectrometer with kHz resolution
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics. State Key Laboratory of Quantum Optics and Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China.
Umeå University, Faculty of Science and Technology, Department of Physics.
Show others and affiliations
2017 (English)In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 25, no 18, p. 21711-21718Article in journal (Refereed) Published
Abstract [en]

Optical cavities provide high sensitivity to dispersion since their resonance frequencies depend on the index of refraction. We present a direct, broadband, and accurate measurement of the modes of a high finesse cavity using an optical frequency comb and a mechanical Fourier transform spectrometer with a kHz-level resolution. We characterize 16000 longitudinal cavity modes spanning 16 THz of bandwidth in terms of center frequency, linewidth, and amplitude. Using the center frequencies we retrieve the group delay dispersion of the cavity mirror coatings and pure N2 with 0.1 fs2 precision and 1 fs2 accuracy, as well as the refractivity of the 3ν13 absorption band of CO2 with 5 × 10‒12 precision. This opens up for broadband refractive index metrology and calibration-free spectroscopy of entire molecular bands.

Place, publisher, year, edition, pages
Optical Society of America, 2017. Vol. 25, no 18, p. 21711-21718
National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:umu:diva-140651DOI: 10.1364/OE.25.021711ISI: 000411529000067OAI: oai:DiVA.org:umu-140651DiVA, id: diva2:1149963
Available from: 2017-10-17 Created: 2017-10-17 Last updated: 2018-11-13Bibliographically approved
In thesis
1. Optical Frequency Comb Fourier Transform Spectroscopy
Open this publication in new window or tab >>Optical Frequency Comb Fourier Transform Spectroscopy
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fourier transform spectroscopy (FTS) based on optical frequency combs is an excellent spectroscopic tool as it provides broadband molecular spectra with high spectral resolution and an absolutely calibrated frequency scale. Moreover, the equidistant comb mode structure enables efficient coupling of the comb to enhancement cavities, yielding high detection sensitivity. This thesis focuses on further advances in comb-based FTS to improve its performance and extend its capabilities for broadband precision spectroscopy, particularly in terms of i) spectral resolution, ii) accuracy and precision of molecular parameters as well as concentrations retrieved from fitting models to spectra, and iii) species selectivity.

To improve the spectral resolution we developed a new methodology to acquire and analyze comb-based FTS signals that yields spectra with a resolution limited by the comb linewidth rather than the optical path difference of the FTS, referred to as the sub-nominal resolution method. This method enables measurements of narrow features, e.g. low-pressure absorption spectra and modes of enhancement cavities, with frequency scale accuracy and precision provided by the comb. Using the technique we measured low-pressure spectra of the entire 3ν13 carbon dioxide (CO2) band at 1575 nm with sufficient signal-to-noise ratio and precision to observe collision narrowing of the absorption lineshape, which was for the first time with a comb-based spectroscopic technique. This allowed retrieval of spectral line parameters for this CO2 band using the speed-dependent Voigt profile.

Using the sub-nominal resolution method, we measured the transmission modes of a Fabry-Perot cavity over 15 THz of bandwidth with kHz resolution and characterized the cavity modes in terms of their center frequency, linewidth, and amplitude. From the mode center frequencies, we retrieved the group delay dispersion of cavity mirror coatings and intracavity gas with an unprecedented combination of spectral bandwidth and resolution. By measuring both the mode broadening and frequency shift simultaneously we performed broadband cavity-enhanced complex refractive index spectroscopy (CE-CRIS), which allows for simultaneous and calibration-free assessment of the absorption and dispersion spectra of intracavity gas. In this first demonstration we measured the absorption and dispersion spectra of three combination bands of CO2 in the 1525 to 1620 nm range.

Another comb-based FTS technique is noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), which combines phase modulation and cavity-enhancement to obtain broadband and highly sensitive absorption spectra. In this thesis we improved the NICE-OFCS technique in terms of stability, sensitivity and modeling of the NICE-OFCS signal. We implemented a model of the NICE-OFCS signal with multiline fitting for assessment of gas concentration. We also identified the optimum operating conditions of the NICE-OFCS systems for accurate gas concentration assessment.

Finally, to improve the species selectivity we combined comb-based FTS with the Faraday rotation spectroscopy (FRS) technique. In this first demonstration of optical frequency comb Faraday rotation spectroscopy (OFC-FRS), we measured background and interference-free spectra of the entire Q- and R-branches of the fundamental vibrational band of nitric oxide at 5.3 μm showing good agreement with the theoretical model.

Place, publisher, year, edition, pages
Umeå: Umeå Universitet, 2018. p. 155
Keywords
Optical frequency comb spectroscopy, Fourier transform, molecular absorption & dispersion
National Category
Atom and Molecular Physics and Optics
Research subject
Physics
Identifiers
urn:nbn:se:umu:diva-153239 (URN)978-91-7601-983-2 (ISBN)
Public defence
2018-12-07, N430, Naturvetarhuset, Umeå, 09:15 (English)
Opponent
Supervisors
Available from: 2018-11-16 Created: 2018-11-13 Last updated: 2018-11-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Rutkowski, LucileJohansson, Alexandra C.Zhao, GangHausmaninger, ThomasKhodabakhsh, AmirAxner, OveFoltynowicz, Aleksandra

Search in DiVA

By author/editor
Rutkowski, LucileJohansson, Alexandra C.Zhao, GangHausmaninger, ThomasKhodabakhsh, AmirAxner, OveFoltynowicz, Aleksandra
By organisation
Department of Physics
In the same journal
Optics Express
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 241 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf