umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimal deep brain stimulation site and target connectivity for chronic cluster headache
Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
Show others and affiliations
2017 (English)In: Neurology, ISSN 0028-3878, E-ISSN 1526-632X, Vol. 89, no 20, p. 2083-2091Article in journal (Refereed) Published
Abstract [en]

Objective: To investigate the mechanism of action of deep brain stimulation for refractory chronic cluster headache and the optimal target within the ventral tegmental area. Methods: Seven patients with refractory chronic cluster headache underwent high spatial and angular resolution diffusion MRI preoperatively. MRI-guided and MRI-verified electrode implantation was performed unilaterally in 5 patients and bilaterally in 2. Volumes of tissue activation were generated around active lead contacts with a finite-element model. Twelve months after surgery, voxel-based morphometry was used to identify voxels associated with higher reduction in headache load. Probabilistic tractography was used to identify the brain connectivity of the activation volumes in responders, defined as patients with a reduction of >= 30% in headache load. Results: There was no surgical morbidity. Average follow-up was 34 +/- 14 months. Patients showed reductions of 76 +/- 33% in headache load, 46 +/- 41% in attack severity, 58 +/- 41% in headache frequency, and 51 +/- 46% in attack duration at the last follow-up. Six patients responded to treatment. Greatest reduction in headache load was associated with activation in an area cantered at 6 mm lateral, 2 mm posterior, and 1 mm inferior to the midcommissural point of the third ventricle. Average responders' activation volume lay on the trigeminohypothalamic tract, connecting the trigeminal system and other brainstem nuclei associated with nociception and pain modulation with the hypothalamus, and the prefrontal and mesial temporal areas. Conclusions: We identify the optimal stimulation site and structural connectivity of the deep brain stimulation target for cluster headache, explicating possible mechanisms of action and disease pathophysiology.

Place, publisher, year, edition, pages
LIPPINCOTT WILLIAMS & WILKINS , 2017. Vol. 89, no 20, p. 2083-2091
National Category
Neurology
Identifiers
URN: urn:nbn:se:umu:diva-143612DOI: 10.1212/WNL.0000000000004646ISI: 000417676500011PubMedID: 29030455OAI: oai:DiVA.org:umu-143612DiVA, id: diva2:1170803
Available from: 2018-01-04 Created: 2018-01-04 Last updated: 2018-06-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Hariz, Marwan

Search in DiVA

By author/editor
Hariz, Marwan
By organisation
Umeå Centre for Functional Brain Imaging (UFBI)
In the same journal
Neurology
Neurology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf