umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sensitive and Selective Differential Pulse Voltammetry Detection of Cd(II) and Pb(II) Using Nitrogen-Doped Porous Carbon Nanofiber Film Electrode
Show others and affiliations
2017 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, no 13, p. H967-H974Article in journal (Refereed) Published
Abstract [en]

Carbon matrix materials are regarded as one of the most important electrode materials for heavy metal detection. But even so, optimization procedures of carbon nanofibers (CNFs) for tracing Cd(II) and Pb(II) remains challenging. Here, zeolitic imidazolate framework (ZIF-8)/polyacrylonitrile (PAN)-derived nitrogen-doped porous carbon nanofibers (N-PCNFs) were investigated as a new electrode material for determining the concentration of Cd(II) and Pb(II). By optimizing electrochemical conditions such as deposition potential, deposition time, pH of buffer solution, and quantity of N-PCNFs loaded on a glassy carbon electrode (GCE), the linear response curves of Cd(II) and Pb(II) could be obtained. Due to the unique structural feature and N content, the N-PCNFs possess excellent detection limits of 0.8 mu g L-1 for Cd(II) and 0.3 mu g L-1 for Pb(II) (S/N = 3). To manifest the practical use of the sensor platform the concentration of Cd(II) and Pb(II) in normal tap and waste water were monitored. According to the ICP-MS results, the calculated recovery (97.0-107%) indicates that N-PCNFs have potential as a candidate material to monitor the concentration of Cd(II) and Pb(II) in practical samples.

Place, publisher, year, edition, pages
Electrochemical Society, 2017. Vol. 164, no 13, p. H967-H974
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-143676DOI: 10.1149/2.1611713jesISI: 000418409800195OAI: oai:DiVA.org:umu-143676DiVA, id: diva2:1171002
Available from: 2018-01-05 Created: 2018-01-05 Last updated: 2018-06-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Wågberg, ThomasHu, Guangzhi

Search in DiVA

By author/editor
Wågberg, ThomasHu, Guangzhi
By organisation
Department of Physics
In the same journal
Journal of the Electrochemical Society
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 102 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf