umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
3D printed water-soluble scaffolds for rapid production of PDMS micro-fluidic flow chambers
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0001-5475-1422
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, nr 1, artikkel-id 3372Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We report a novel method for fabrication of three-dimensional (3D) biocompatible micro-fluidic flow chambers in polydimethylsiloxane (PDMS) by 3D-printing water-soluble polyvinyl alcohol (PVA) filaments as master scaffolds. The scaffolds are first embedded in the PDMS and later residue-free dissolved in water leaving an inscription of the scaffolds in the hardened PDMS. We demonstrate the strength of our method using a regular, cheap 3D printer, and evaluate the inscription process and the channels micro-fluidic properties using image analysis and digital holographic microscopy. Furthermore, we provide a protocol that allows for direct printing on coverslips and we show that flow chambers with a channel cross section down to 40 x 300 μm can be realized within 60 min. These flow channels are perfectly transparent, biocompatible and can be used for microscopic applications without further treatment. Our proposed protocols facilitate an easy, fast and adaptable production of micro-fluidic channel designs that are cost-effective, do not require specialized training and can be used for a variety of cell and bacterial assays. To help readers reproduce our micro-fluidic devices, we provide: full preparation protocols, 3D-printing CAD files for channel scaffolds and our custom-made molding device, 3D printer build-plate leveling instructions, and G-code.

sted, utgiver, år, opplag, sider
Nature Publishing Group, 2018. Vol. 8, nr 1, artikkel-id 3372
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-144631DOI: 10.1038/s41598-018-21638-wISI: 000425500300044OAI: oai:DiVA.org:umu-144631DiVA, id: diva2:1181373
Forskningsfinansiär
Swedish Research Council, 2013-5379The Kempe Foundations, JCK-1622Tilgjengelig fra: 2018-02-08 Laget: 2018-02-08 Sist oppdatert: 2018-08-16bibliografisk kontrollert
Inngår i avhandling
1. Digital holography and image processing methods for applications in biophysics
Åpne denne publikasjonen i ny fane eller vindu >>Digital holography and image processing methods for applications in biophysics
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Understanding dynamic mechanisms, morphology and behavior of bacteria are important to develop new therapeutics to cure diseases. For example, bacterial adhesion mechanisms are prerequisites for initiation of infections and for several bacterial strains this adhesion process is mediated by adhesive surface organelles, also known as fimbriae. Escherichia coli (E. coli) is a bacterium expressing fimbriae of which pathogenic strains can cause severe diseases in fluidic environments such as the urinary tract and intestine. To better understand how E. coli cells attach and remain attached to surfaces when exposed to a fluid flow using their fimbriae, experiments using microfluidic channels are important; and to assess quantitative information of the adhesion process and cellular information of morphology, location and orientation, the imaging capability of the experimental technique is vital.

In-line digital holographic microscopy (DHM) is a powerful imaging technique that can be realized around a conventional light microscope. It is a non-invasive technique without the need of staining or sectioning of the sample to be observed in vitro. DHM provides holograms containing three-dimensional (3D) intensity and phase information of cells under study with high temporal and spatial resolution. By applying image processing algorithms to the holograms, quantitative measurements can provide information of position, shape, orientation, optical thickness of the cell, as well as dynamic cell properties such as speed, growing rate, etc.

In this thesis, we aim to improve the DHM technique and develop image processing methods to track and assess cellular properties in microfluidic channels to shed light on bacterial adhesion and cell morphology. To achieve this, we implemented a DHM technique and developed image processing algorithms to provide for a robust and quantitative analysis of holograms. We improved the cell detection accuracy and efficiency in DHM holograms by developing an algorithm for detection of cell diffraction patterns. To improve the 3D detection accuracy using in-line digital holography, we developed a novel iterative algorithm that use multiple-wavelengths. We verified our algorithms using synthetic, colloidal and cell data and applied the algorithms for detecting, tracking and analysis. We demonstrated the performance when tracking bacteria with sub-micrometer accuracy and kHz temporal resolution, as well as how DHM can be used to profile a microfluidic flow using a large number of colloidal particles. We also demonstrated how the results of cell shape analysis based on image segmentation can be used to estimate the hydrodynamic force on tethered capsule-shaped cells in micro-fluidic flows near a surface.

sted, utgiver, år, opplag, sider
Umeå: Umeå University, 2018. s. 59
Emneord
Digital holographic microscopy, image processing, image reconstruction, bacterial adhesion, cell morphology, algorithm development, software design, quantitative measurement, microfluidics, multidisciplinary research
HSV kategori
Forskningsprogram
signalbehandling; teknisk fysik med inriktningen mikrosystemteknik
Identifikatorer
urn:nbn:se:umu:diva-150687 (URN)978-91-7601-915-3 (ISBN)
Disputas
2018-09-07, Naturvetarhuset, N430, Umeå, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-08-17 Laget: 2018-08-15 Sist oppdatert: 2018-08-16bibliografisk kontrollert

Open Access i DiVA

fulltext(5697 kB)259 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 5697 kBChecksum SHA-512
a3129f8fbca923c95484dc9520f67e84db97809ac2b40a9ea7c7c7981fd3d244dbc426a97ccb25727d013f70fc6094a991b53a3dd014441c5098b4c5fdd1da3a
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Dahlberg, TobiasStangner, TimHanqing, ZhangWiklund, KristerLundberg, PetterEdman, LudvigAndersson, Magnus

Søk i DiVA

Av forfatter/redaktør
Dahlberg, TobiasStangner, TimHanqing, ZhangWiklund, KristerLundberg, PetterEdman, LudvigAndersson, Magnus
Av organisasjonen
I samme tidsskrift
Scientific Reports

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 259 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 6416 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf