umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
OptiBook: Optimal Resource Booking for Energy-efficient Datacenters
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (Cloud computing)
Red Hat, Madrid, Spain.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (Cloud computing)
2017 (Engelska)Ingår i: 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS), IEEE Communications Society, 2017Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

A lack of energy proportionality, low resource utilization, and interference in virtualized infrastructure make the cloud a challenging target environment for improving energy efficiency. In this paper we present OptiBook, a system that improves energy proportionality and/or resource utilization to optimize performance and energy efficiency. OptiBook shares servers between latency-sensitive services and batch jobs, over- books the system in a controllable manner, uses vertical (CPU and DVFS) scaling for prioritized virtual machines, and applies performance isolation techniques such as CPU pinning and quota enforcement as well as online resource tuning to effectively improve energy efficiency. Our evaluations show that on average, OptiBook improves performance per watt by 20% and reduces energy consumption by 9% while minimizing SLO violations. 

Ort, förlag, år, upplaga, sidor
IEEE Communications Society, 2017.
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:umu:diva-145492DOI: 10.1109/IWQoS.2017.7969135ISI: 000428199300029ISBN: 978-1-5386-2704-4 (digital)ISBN: 978-1-5386-2705-1 (tryckt)OAI: oai:DiVA.org:umu-145492DiVA, id: diva2:1188260
Konferens
2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS), Vilanova i la Geltrú, Spain, June 14-16, 2017
Tillgänglig från: 2018-03-07 Skapad: 2018-03-07 Senast uppdaterad: 2018-06-09Bibliografiskt granskad
Ingår i avhandling
1. Energy-efficient cloud computing: autonomic resource provisioning for datacenters
Öppna denna publikation i ny flik eller fönster >>Energy-efficient cloud computing: autonomic resource provisioning for datacenters
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Energy efficiency has become an increasingly important concern in data centers because of issues associated with energy consumption, such as capital costs, operating expenses, and environmental impact. While energy loss due to suboptimal use of facilities and non-IT equipment has largely been reduced through the use of best-practice technologies, addressing energy wastage in IT equipment still requires the design and implementation of energy-aware resource management systems. This thesis focuses on the development of resource allocation methods to improve energy efficiency in data centers. The thesis employs three approaches to improve efficiency for optimized power and performance: scaling virtual machine (VM) and server processing capabilities to reduce energy consumption; improving resource usage through workload consolidation; and exploiting resource heterogeneity.

To achieve these goals, the first part of the thesis proposes models, algorithms, and techniques that reduce energy usage through the use of VM scaling, VM sizing for CPU and memory, CPU frequency adaptation, as well as hardware power capping for server-level resource allocation. The proposed online performance and power models capture system behavior while adapting to changes in the underlying infrastructure. Based on these models, the thesis proposes controllers that dynamically determine power-efficient resource allocations while minimizing performance penalty.

These methods are then extended to support resource overbooking and workload consolidation to improve resource utilization and energy efficiency across the cluster or data center. In order to cater for different performance requirements among collocated applications, such as latency-sensitive services and batch jobs, the controllers apply service differentiation among prioritized VMs and performance isolation techniques, including CPU pinning, quota enforcement, and online resource tuning.

This thesis also considers resource heterogeneity and proposes heterogeneousaware scheduling techniques to improve energy efficiency by integrating hardware accelerators (in this case FPGAs) and exploiting differences in energy footprint of different servers. In addition, the thesis provides a comprehensive study of the overheads associated with a number of virtualization platforms in order to understand the trade-offs provided by the latest technological advances and to make the best resource allocation decisions accordingly. The proposed methods in this thesis are evaluated by implementing prototypes on real testbeds and conducting experiments using real workload data taken from production systems and synthetic workload data that we generated. Our evaluation results demonstrate that the proposed approaches provide improved energy management of resources in virtualized data centers.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2018. s. 63
Serie
Report / UMINF, ISSN 0348-0542 ; 18.05
Nyckelord
Cloud computing, datacenter, energy-efficiency, performance management, virtualization
Nationell ämneskategori
Datorsystem
Identifikatorer
urn:nbn:se:umu:diva-145926 (URN)978-91-7601-862-0 (ISBN)
Disputation
2018-04-16, MA121, MIT-building, Umeå, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-03-26 Skapad: 2018-03-22 Senast uppdaterad: 2018-06-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Tesfatsion, Selome KostentinosTomás, LuisTordsson, Johan

Sök vidare i DiVA

Av författaren/redaktören
Tesfatsion, Selome KostentinosTomás, LuisTordsson, Johan
Av organisationen
Institutionen för datavetenskap
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 77 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf