umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On minimum length scale control in density based topology optimization
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2018 (engelsk)Inngår i: Structural and multidisciplinary optimization (Print), ISSN 1615-147X, E-ISSN 1615-1488, Vol. 58, nr 3, s. 1015-1032Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The archetypical topology optimization problem concerns designing the layout of material within a given region of space so that some performance measure is extremized. To improve manufacturability and reduce manufacturing costs, restrictions on the possible layouts may be imposed. Among such restrictions, constraining the minimum length scales of different regions of the design has a significant place. Within the density filter based topology optimization framework the most commonly used definition is that a region has a minimum length scale not less than D if any point within that region lies within a sphere with diameter D > 0 that is completely contained in the region. In this paper, we propose a variant of this minimum length scale definition for subsets of a convex (possibly bounded) domain We show that sets with positive minimum length scale are characterized as being morphologically open. As a corollary, we find that sets where both the interior and the exterior have positive minimum length scales are characterized as being simultaneously morphologically open and (essentially) morphologically closed. For binary designs in the discretized setting, the latter translates to that the opening of the design should equal the closing of the design. To demonstrate the capability of the developed theory, we devise a method that heuristically promotes designs that are binary and have positive minimum length scales (possibly measured in different norms) on both phases for minimum compliance problems. The obtained designs are almost binary and possess minimum length scales on both phases.

sted, utgiver, år, opplag, sider
Springer, 2018. Vol. 58, nr 3, s. 1015-1032
Emneord [en]
topology optimization, nonlinear filters, size control, mathematical morphology
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-151378DOI: 10.1007/s00158-018-1944-0ISI: 000441847800010OAI: oai:DiVA.org:umu-151378DiVA, id: diva2:1245951
Forskningsfinansiär
Swedish Foundation for Strategic Research , AM13-0029Swedish Research Council, 621-3706Tilgjengelig fra: 2018-09-06 Laget: 2018-09-06 Sist oppdatert: 2018-09-06bibliografisk kontrollert

Open Access i DiVA

fulltext(11540 kB)84 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 11540 kBChecksum SHA-512
270bd6948f88ef162be9c0d2c7034446ff1d767cee3dbc8e996288e044aae3ec17782b789f428b60010ea0d3d4bff76e7def0aee5ae208cf12c9c905aab76b51
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Hägg, LinusWadbro, Eddie

Søk i DiVA

Av forfatter/redaktør
Hägg, LinusWadbro, Eddie
Av organisasjonen
I samme tidsskrift
Structural and multidisciplinary optimization (Print)

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 84 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 175 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf