umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Slag Formation during Entrained Flow Gasification: Silicon Rich Grass Fuel with KHCO3 Additive
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. (Thermochemical Energy Conversion Laboratory (TEC-Lab))ORCID-id: 0000-0003-1095-9154
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. (Thermochemical Energy Conversion Laboratory (TEC-Lab))
2018 (Engelska)Ingår i: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 32, nr 10, s. 10720-10726Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Prediction of ash particle adherence to walls, melting, and flow properties are important for successful operation of slagging entrained flow gasifiers. In the present study, silicon-rich reed canary grass was gasified at 1000 and 1200 °C with solid KHCO3 added at 0, 1, or 5 wt % to evaluate the impact and efficiency of the dry mixed additive on slag properties. The fuel particles collided with an angled flat impact probe inside the hot reactor, constructed to allow for particle image velocimetry close to the surface of the probe. Ash deposit layer buildup was studied in situ as well as ash particle shape, size, and velocity as they impacted on the probe surface. The ash deposits were analyzed using scanning electron microscopy–energy-dispersive X-ray spectroscopy, giving detailed information on morphology and elemental composition. Results were compared to thermodynamic equilibrium calculations for phase composition and viscosity. The experimental observations (slag melting, flow properties, and composition) were in good qualitative agreement with the theoretical predictions. Accordingly, at 1000 °C, no or partial melts were observed depending upon the potassium/silicon ratio; instead, high amounts of additive and a temperature of at least 1200 °C were needed to create a flowing melt.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2018. Vol. 32, nr 10, s. 10720-10726
Nationell ämneskategori
Energiteknik Annan kemiteknik
Identifikatorer
URN: urn:nbn:se:umu:diva-151688DOI: 10.1021/acs.energyfuels.8b02545ISI: 000448087000068Scopus ID: 2-s2.0-85053900505OAI: oai:DiVA.org:umu-151688DiVA, id: diva2:1246697
Projekt
Bio4EnergyTillgänglig från: 2018-09-10 Skapad: 2018-09-10 Senast uppdaterad: 2019-08-30Bibliografiskt granskad
Ingår i avhandling
1. Entrained flow studies on biomass fuel powder conversion and ash formation
Öppna denna publikation i ny flik eller fönster >>Entrained flow studies on biomass fuel powder conversion and ash formation
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Partikelomvandling och askbildning i pulverflammor
Abstract [en]

Reducing the global dependence on fossil fuels is of paramount importance in tackling the environmental challenges we face, not only tomorrow, but already today. Biomass offers a renewable supply of CO2-neutral raw material that can be converted into many different forms of fuels and valuable chemicals, making it a prime candidate for the technologies of tomorrow. However, the heterogeneous nature and distinctly different elemental composition of biomass compared to traditional fossil sources present new challenges to be solved. When it comes to thermochemical technologies, key issues concern fuel conversion efficiency, ash formation, ash/fuel interactions and ash/reactor material interactions.

The objective of the present thesis was to provide new knowledge and insights into thermochemical fuel conversion, in particular its application in entrained flow technologies. A laboratory-scale reactor was constructed, evaluated and was used to study several aspects of high-temperature entrained flow biomass fuel conversion. Pulverized fuel particles from different biomass sources were used, and their physical and chemical interactions with the surrounding atmosphere, the concurrent ash element release, ash formation, and phase interactions were also studied in detail. In addition to the entrained flow reactor designed and constructed for this purpose, the main method for data collection was in situ optical studies of converting particles, either while entrained in the flow or when impacting upon surfaces. Elemental composition analysis of collected samples and gas analysis were also performed, allowing for a deeper understanding of ash element fractionation and interactions and thus explaining the observed properties of the resulting deposits or slag.

The degree of conversion of fuels with very low ash content, such as stem wood, was well described and modeled by a novel method using optical data, offering a non-intrusive and non-destructive alternative to traditional techniques. Coupling computational fluid dynamics with optical data allowed for improved experimental data interpretation and provided improved accuracy for fuel particle residence time estimations, which is an important parameter when studying fast chemical reactions such as those taking place in reactors for entrained flow conditions. The results from studies on ash formation gave new insights into the feasibility of using dry-mixed K-rich additives for improving slag properties during gasification of Ca-rich and Si-rich fuels. Interpretations of the experimental results were supported by thermodynamic equilibrium calculations, and the conclusions highlight both possibilities and challenges in gasification with high fuel flexibility while at the same time producing a flowing slag. Applications and future implications are discussed, and new topics of interest are presented.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2018. s. 63
Nyckelord
Thermochemical biomass conversion, particle image velocimetry, gasification, entrained flow reactor, ash transformation, equilibrium calculations, slag formation
Nationell ämneskategori
Oorganisk kemi Kemiteknik Energiteknik
Identifikatorer
urn:nbn:se:umu:diva-152332 (URN)978-91-7601-937-5 (ISBN)
Disputation
2018-10-26, N430, Naturvetarhuset, Umeå, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Bio4EnergyVetenskapsrådetEnergimyndigheten
Tillgänglig från: 2018-10-05 Skapad: 2018-10-02 Senast uppdaterad: 2018-10-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Holmgren, PerBroström, MarkusBackman, Rainer

Sök vidare i DiVA

Av författaren/redaktören
Holmgren, PerBroström, MarkusBackman, Rainer
Av organisationen
Institutionen för tillämpad fysik och elektronik
I samma tidskrift
Energy & Fuels
EnergiteknikAnnan kemiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 198 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf