umu.sePublications
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fabrication of microporous layer - free hierarchical gas diffusion electrode as a low Pt-loading PEMFC cathode by direct growth of helical carbon nanofibers
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-6830-2174
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-5210-2645
Umeå University, Faculty of Science and Technology, Department of Physics. Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
Show others and affiliations
2018 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 8, no 72, p. 41566-41574Article in journal (Refereed) Published
Abstract [en]

Improving interfacial contact between each component in the proton exchange membrane fuel cell (PEMFC) can lead to a significant increase in power density and Pt utilization. In this work, the junction between the catalyst layer and gas diffusion layer (GDL) is greatly enhanced through direct attachment of helical carbon nanofibers, giving rise to a hierarchical structure within the electrical interconnections. The alternative novel GDL is produced by spraying a thin layer of Pd2C60 precursor on commercial carbon paper, followed by chemical vapor deposition growth resulting in a surface morphology of well-attached nanofibers surrounding the microfibers present in the commercial carbon paper. Subsequent solvothermal deposition of platinum nanoparticles allowed evaluation of its suitability as gas diffusion electrode in cathodic H-2/O-2 PEMFC environment. A combination of lowered charge transfer resistance and enhanced Pt-utilization is attributed to its unique wire-like appearance and its robust properties. The fabricated microporous layer - free GDL is suitable for relatively aggressive membrane electrode assembly fabrication procedures and is produced by industrially favorable techniques, rendering it capable of efficiently supporting small amounts of precious metal catalyst nanoparticles in various PEM applications.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2018. Vol. 8, no 72, p. 41566-41574
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-155124DOI: 10.1039/c8ra07569gISI: 000453914300053OAI: oai:DiVA.org:umu-155124DiVA, id: diva2:1276538
Funder
The Kempe FoundationsSwedish Energy AgencySwedish Research CouncilAvailable from: 2019-01-08 Created: 2019-01-08 Last updated: 2019-01-08Bibliographically approved

Open Access in DiVA

fulltext(2606 kB)2 downloads
File information
File name FULLTEXT01.pdfFile size 2606 kBChecksum SHA-512
26b22373601e91cc20c6c3fd4a48dbdd8e96a5bce76e6314c4a0859abad618b4004e908eb86b2c3bfecc272b828d360aaf4ba9df6d5eca9030f1c2970aa5174d
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Sandström, RobinEkspong, JoakimAnnamalai, AlagappanSharifi, TivaKlechikov, AlexeyWågberg, Thomas

Search in DiVA

By author/editor
Sandström, RobinEkspong, JoakimAnnamalai, AlagappanSharifi, TivaKlechikov, AlexeyWågberg, Thomas
By organisation
Department of Physics
In the same journal
RSC Advances
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 2 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf