umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Contactless Measuring Method of Skin Temperature based on the Skin Sensitivity Index and Deep Learning
College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; Computer Vision Laboratory (CVL), ETH Zürich, 8092 Zürich, Switzerland.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China.
Vise andre og tillknytning
2019 (engelsk)Inngår i: Applied Sciences: APPS, ISSN 1454-5101, E-ISSN 1454-5101, Vol. 9, nr 7, artikkel-id 1375Artikkel i tidsskrift (Fagfellevurdert) [Kunstnerisk arbeiden] Published
Abstract [en]

In human-centered intelligent building, real-time measurements of human thermal comfort play critical roles and supply feedback control signals for building heating, ventilation, and air conditioning (HVAC) systems. Due to the challenges of intra- and inter-individual differences and skin subtleness variations, there has not been any satisfactory solution for thermal comfort measurements until now. In this paper, a contactless measuring method based on a skin sensitivity index and deep learning (NISDL) was proposed to measure real-time skin temperature. A new evaluating index, named the skin sensitivity index (SSI), was defined to overcome individual differences and skin subtleness variations. To illustrate the effectiveness of SSI proposed, a two multi-layers deep learning framework (NISDL method I and II) was designed and the DenseNet201 was used for extracting features from skin images. The partly personal saturation temperature (NIPST) algorithm was use for algorithm comparisons. Another deep learning algorithm without SSI (DL) was also generated for algorithm comparisons. Finally, a total of 1.44 million image data was used for algorithm validation. The results show that 55.62% and 52.25% error values (NISDL method I, II) are scattered at (0 °C, 0.25 °C), and the same error intervals distribution of NIPST is 35.39%. 

sted, utgiver, år, opplag, sider
Switzerland: MDPI, 2019. Vol. 9, nr 7, artikkel-id 1375
Emneord [en]
contactless measurements; skin sensitivity index; thermal comfort; subtleness magnification; deep learning; piecewise stationary time series
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-159773DOI: 10.3390/app9071375OAI: oai:DiVA.org:umu-159773DiVA, id: diva2:1320864
Tilgjengelig fra: 2019-06-05 Laget: 2019-06-05 Sist oppdatert: 2019-06-20bibliografisk kontrollert

Open Access i DiVA

fulltext(2660 kB)32 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2660 kBChecksum SHA-512
52fc04d550d5030ba3e3979dc2d6c5f9217c143ea50ca623b7e99c4b93e8f30f278f04542f1522031bd574072bd01c49ee4b25b9012fc8a93c864fb24eaba667
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Cheng, XiaogangYang, BinOlofsson, Thomas

Søk i DiVA

Av forfatter/redaktør
Cheng, XiaogangYang, BinOlofsson, Thomas
Av organisasjonen
I samme tidsskrift
Applied Sciences: APPS

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 32 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 141 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf