umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
FT Modulates Genome-Wide DNA-Binding of the bZIP Transcription Factor FD
Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Max Planck Institute for Developmental Biology,Department of Molecular Biology, Tübingen, Germany.ORCID iD: 0000-0002-9603-0882
Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Max Planck Institute for Developmental Biology,Department of Molecular Biology, Tübingen, Germany; Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People’s Republic of China.ORCID iD: 0000-0002-0068-2967
2019 (English)In: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 180, no 1, p. 367-380Article in journal (Refereed) Published
Abstract [en]

The transition to flowering is a crucial step in the plant life cycle that is controlled by multiple endogenous and environmental cues, including hormones, sugars, temperature, and photoperiod. Permissive photoperiod induces the expression of FLOWERING LOCUS T (FT) in the phloem companion cells of leaves. The FT protein then acts as a florigen that is transported to the shoot apical meristem, where it physically interacts with the Basic Leucine Zipper Domain transcription factor FD and 14-3-3 proteins. However, despite the importance of FD in promoting flowering, its direct transcriptional targets are largely unknown. Here, we combined chromatin immunoprecipitation sequencing and RNA sequencing to identify targets of FD at the genome scale and assessed the contribution of FT to DNA binding. We further investigated the ability of FD to form protein complexes with FT and TERMINAL FLOWER1 through interaction with 14-3-3 proteins. Importantly, we observed direct binding of FD to targets involved in several aspects of plant development. These target genes were previously unknown to be directly related to the regulation of flowering time. Our results confirm FD as a central regulator of floral transition at the shoot meristem and provide evidence for crosstalk between the regulation of flowering and other signaling pathways, such as pathways involved in hormone signaling.

Place, publisher, year, edition, pages
American Society of Plant Biologists , 2019. Vol. 180, no 1, p. 367-380
National Category
Botany
Identifiers
URN: urn:nbn:se:umu:diva-159400DOI: 10.1104/pp.18.01505ISI: 000466860800033PubMedID: 30770462OAI: oai:DiVA.org:umu-159400DiVA, id: diva2:1322053
Available from: 2019-06-10 Created: 2019-06-10 Last updated: 2019-06-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Collani, SilvioSchmid, Markus

Search in DiVA

By author/editor
Collani, SilvioYant, LeviSchmid, Markus
By organisation
Umeå Plant Science Centre (UPSC)Department of Plant Physiology
In the same journal
Plant Physiology
Botany

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf