umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Elucidation of the pressure induced amorphization of tetrahydrofuran clathrate hydrate
Show others and affiliations
2019 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 150, no 20, article id 204506Article in journal (Refereed) Published
Abstract [en]

The type II clathrate hydrate (CH) THF·17 H2O (THF = tetrahydrofuran) is known to amorphize on pressurization to ∼1.3 GPa in the temperature range 77–140 K. This seems to be related to the pressure induced amorphization (PIA) of hexagonal ice to high density amorphous (HDA) ice. Here, we probe the PIA of THF-d8 · 17 D2O (TDF-CD) at 130 K by in situthermal conductivity and neutron diffraction experiments. Both methods reveal amorphization of TDF-CD between 1.1 and 1.2 GPa and densification of the amorphous state on subsequent heating from 130 to 170 K. The densification is similar to the transition of HDA to very-high-density-amorphous ice. The first diffraction peak (FDP) of the neutron structure factor function, S(Q), of amorphous TDF-CD at 130 K appeared split. This feature is considered a general phenomenon of the crystalline to amorphous transition of CHs and reflects different length scales for D-D and D-O correlations in the water network and the cavity structure around the guest. The maximum corresponding to water-water correlations relates to the position of the FDP of HDA ice at ∼1 GPa. Upon annealing, the different length scales for water-water and water-guest correlations equalize and the FDP in the S(Q) of the annealed amorph represents a single peak. The similarity of local water structures in amorphous CHs and amorphous ices at in situ conditions is confirmed from molecular dynamics simulations. In addition, these simulations show that THF guest molecules are immobilized and retain long-range correlations as in the crystal.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2019. Vol. 150, no 20, article id 204506
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:umu:diva-161741DOI: 10.1063/1.5083958ISI: 000473301400044PubMedID: 31153163OAI: oai:DiVA.org:umu-161741DiVA, id: diva2:1339065
Funder
Swedish Foundation for Strategic Research Available from: 2019-07-25 Created: 2019-07-25 Last updated: 2019-07-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Andersson, Ove

Search in DiVA

By author/editor
Bull, Craig L.Andersson, OveHäussermann, Ulrich
By organisation
Department of Physics
In the same journal
Journal of Chemical Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf