umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Validation of 'Somnivore', a Machine Learning Algorithm for Automated Scoring and Analysis of Polysomnography Data
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Frontiers in Neuroscience, ISSN 1662-4548, E-ISSN 1662-453X, Vol. 13, artikel-id 207Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Manual scoring of polysomnography data is labor-intensive and time-consuming, and most existing software does not account for subjective differences and user variability. Therefore, we evaluated a supervised machine learning algorithm, Somnivore (TM), for automated wake-sleep stage classification. We designed an algorithm that extracts features from various input channels, following a brief session of manual scoring, and provides automated wake-sleep stage classification for each recording. For algorithm validation, polysomnography data was obtained from independent laboratories, and include normal, cognitively-impaired, and alcohol-treated human subjects (total n = 52), narcoleptic mice and drug-treated rats (total n = 56), and pigeons (n = 5). Training and testing sets for validation were previously scored manually by 1-2 trained sleep technologists from each laboratory. F-measure was used to assess precision and sensitivity for statistical analysis of classifier output and human scorer agreement. The algorithm gave high concordance with manual visual scoring across all human data (wake 0.91 +/- 0.01; N1 0.57 +/- 0.01; N2 0.81 +/- 0.01; N3 0.86 +/- 0.01; REM 0.87 +/- 0.01), which was comparable to manual inter-scorer agreement on all stages. Similarly, high concordance was observed across all rodent (wake 0.95 +/- 0.01; NREM 0.94 +/- 0.01; REM 0.91 +/- 0.01) and pigeon (wake 0.96 +/- 0.006; NREM 0.97 +/- 0.01; REM 0.86 +/- 0.02) data. Effects of classifier learning from single signal inputs, simple stage reclassification, automated removal of transition epochs, and training set size were also examined. In summary, we have developed a polysomnography analysis program for automated sleep-stage classification of data from diverse species. Somnivore enables flexible, accurate, and high-throughput analysis of experimental and clinical sleep studies.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2019. Vol. 13, artikel-id 207
Nyckelord [en]
machine learning algorithms, polysomnography, signal processing algorithms, sleep stage classification, wake-sleep stage scoring
Nationell ämneskategori
Neurovetenskaper
Identifikatorer
URN: urn:nbn:se:umu:diva-162495DOI: 10.3389/fnins.2019.00207ISI: 000461625200001PubMedID: 30936820OAI: oai:DiVA.org:umu-162495DiVA, id: diva2:1344920
Tillgänglig från: 2019-08-22 Skapad: 2019-08-22 Senast uppdaterad: 2019-08-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Wulff, Katharina

Sök vidare i DiVA

Av författaren/redaktören
Martelli, DavideWulff, KatharinaJohnston, Leigh A.Gundlachla, Andrew L.
Av organisationen
Institutionen för strålningsvetenskaperInstitutionen för molekylärbiologi (Medicinska fakulteten)
I samma tidskrift
Frontiers in Neuroscience
Neurovetenskaper

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 47 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf