umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Studies on the biological functions of interaction between components in Wnt, TGF-β and HIF pathways for cancer progression
Umeå University, Faculty of Medicine, Department of Medical Biosciences. (Marene Landström group)ORCID iD: 0000-0001-5071-6187
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cancer is a disease that involves aggressive changes in the genome and aberrant signals between the living cells. Signalling pathways such as TGF-β (Transforming growth factor-β), Wnt, EGF (epidermal growth factor) and HIF (Hypoxia-inducible factor) evolved to regulate growth and development in mammals. These factors are also implicated for tumorigenesis due to failure or aberrant expression of components in these pathways. Cancer progression is a multistep process, and these steps reflect genetic alterations driving the progressive transformation of healthy human cells into highly malignant derivatives. Many types of cancers are diagnosed in the human population, such as head & neck, cervical, brain, liver, colon, prostate, uterine, breast, and renal cell cancer.

Prostate cancer is the second most common cancer and one of the foremost leading cancer-related deaths in men in the world. Aberrant Wnt3a signals promote cancer progression through the accumulation of β-Catenin. In the first paper, we have elucidated intriguing functions for Tumour necrosis factor receptor-associated factor 6 (TRAF6) as a coregulatory factor for the expression of Wnt-target genes which was confirmed in vivo by using CRISPR/Cas9 genomic editing, in zebrafish. Our data suggest that Wnt3a promotes TRAF6 interaction with Wnt components, and TRAF6 is required for gene expression of β-Catenin as well as for the Wnt-ligand co-receptor LRP5. From the in vivo studies, we elucidated positive regulation of TRAF6, which is crucial for survival and development of zebrafish. This study identifies TRAF6 as an evolutionary conserved co-regulatory protein in the Wnt pathway that also promotes the progression of prostate and colorectal cancer due to its positive effects on Wnt3a signalling.

Hypoxia is a condition due to O2 deprivation, and Hypoxia-inducible factors (HIF) transcription factors are responsible for the maintenance of oxygen homeostasis in living cells. Irregularities in these HIF transcription factors trigger pathological cellular responses for initiation and progression of malignant cancers. Renal cell carcinoma, malignant cancer arising in renal parenchyma and renal pelvis and, hypoxia plays a vital role in its progression. In the second paper, we have investigated the clinicopathological relevance of several hypoxic and TGF-β component proteins such as HIF-1α/2α/3α, TGF-β type 1 receptor (ALK5-FL) and the intracellular domain of ALK5 (ALK5-ICD), SNAI1 and PAI-1 with patient survival in clear cell renal cell carcinoma (ccRCC). We showed that HIF-2α associated with low cancer-specific survival. HIF-2α and SNAI1 positively correlated with ALK5-ICD, pSMAD2/3, PAI-1 and SNAI1 with HIF-2α; HIF-1α positively correlated with pSMAD2/3. Further, under normoxic conditions, our data suggest that ALK5 interacts with HIF-1α and HIF-2α, and promotes their expression and target genes such as GLUT1 and CA9, in a VHL dependent manner through its kinase activity. These findings shed light on the critical aspect of cross-talk between TGF-β signalling and hypoxia pathway, and also the novel finding of an interaction between ALK5 and HIF-α might provide a more in-depth understanding of mechanisms behind tumour progression

In the third paper, an ongoing study, we investigated the role of HIF-3α in the progression of Renal cell carcinoma and its association with the components of TGF-β and HIF pathways. We have observed increased levels of HIF-3α in ccRCC and pRCC (papillary renal cell carcinoma) which are associated with advanced tumour stage, metastasis and larger tumours. Also, we found HIF-3α show a significant positive association with pro-invasive gene SNAI1, which is a crucial regulator of epithelial to mesenchymal transition. TRAF6 an E3 ligase known to be a prognostic marker in RCC and we observed HIF-3α associates with TRAF6.

Place, publisher, year, edition, pages
Umeå: Umeå University , 2019. , p. 94
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 2060
Keywords [en]
TRAF6, HIF-1α, HIF-2α, HIF-3α, ALK5, Wnt3a, Hypoxic signalling, TGF-β, zebrafish, β-Catenin
National Category
Cancer and Oncology Cell and Molecular Biology
Research subject
Pathology; Oncology
Identifiers
URN: urn:nbn:se:umu:diva-164830ISBN: 978-91-7855-140-8 (print)OAI: oai:DiVA.org:umu-164830DiVA, id: diva2:1367532
Public defence
2019-11-29, Major groove_J0, NUS, byggnad 6L, Molecular biology, Umeå, 13:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg FoundationSwedish Cancer SocietySwedish Research CouncilCancerforskningsfonden i NorrlandAvailable from: 2019-11-08 Created: 2019-11-04 Last updated: 2019-11-04Bibliographically approved
List of papers
1. TRAF6 function as a novel co-regulator of Wnt3a target genes in prostate cancer
Open this publication in new window or tab >>TRAF6 function as a novel co-regulator of Wnt3a target genes in prostate cancer
Show others...
2019 (English)In: EBioMedicine, E-ISSN 2352-3964, Vol. 45, p. 192-207Article in journal (Refereed) Published
Abstract [en]

Background: Tumour necrosis factor receptor associated factor 6 (TRAF6) promotes inflammation in response to various cytokines. Aberrant Wnt3a signals promotes cancer progression through accumulation of β-Catenin. Here we investigated a potential role for TRAF6 in Wnt signaling.

Methods: TRAF6 expression was silenced by siRNA in human prostate cancer (PC3U) and human colorectal SW480 cells and by CRISPR/Cas9 in zebrafish. Several biochemical methods and analyses of mutant phenotype in zebrafish were used to analyse the function of TRAF6 in Wnt signaling.

Findings: Wnt3a-treatment promoted binding of TRAF6 to the Wnt co-receptors LRP5/LRP6 in PC3U and LNCaP cells in vitro. TRAF6 positively regulated mRNA expression of β-Catenin and subsequent activation of Wnt target genes in PC3U cells. Wnt3a-induced invasion of PC3U and SW480 cells were significantly reduced when TRAF6 was silenced by siRNA. Database analysis revealed a correlation between TRAF6 mRNA and Wnt target genes in patients with prostate cancer, and high expression of LRP5, TRAF6 and c-Myc correlated with poor prognosis. By using CRISPR/Cas9 to silence TRAF6 in zebrafish, we confirm TRAF6 as a key molecule in Wnt3a signaling for expression of Wnt target genes.

Interpretation: We identify TRAF6 as an important component in Wnt3a signaling to promote activation of Wnt target genes, a finding important for understanding mechanisms driving prostate cancer progression.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
beta-Catenin, LRP5, Prostate cancer, TRAF6, Wnt3a, Zebrafish
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-161915 (URN)10.1016/j.ebiom.2019.06.046 (DOI)000475860000026 ()31262711 (PubMedID)2-s2.0-85067957867 (Scopus ID)
Available from: 2019-08-06 Created: 2019-08-06 Last updated: 2019-11-04Bibliographically approved
2. Interactions between TGF-β type I receptor and hypoxia-inducible factor-alpha mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma
Open this publication in new window or tab >>Interactions between TGF-β type I receptor and hypoxia-inducible factor-alpha mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma
Show others...
2019 (English)In: Cell Cycle, ISSN 1538-4101, E-ISSN 1551-4005, Vol. 18, no 17, p. 2141-2156Article in journal (Refereed) Published
Abstract [en]

To investigate the significance of expression of HIF-1 alpha, HIF-2 alpha, and SNAIL1 proteins; and TGF-beta signaling pathway proteins in ccRCC, their relation with clinicopathological parameters and patient's survival were examined. We also investigated potential crosstalk between HIF-alpha and TGF-beta signaling pathway, including the TGF-beta type 1 receptor (ALK5-FL) and the intracellular domain of ALK5 (ALK5-ICD). Tissue samples from 154 ccRCC patients and comparable adjacent kidney cortex samples from 38 patients were analyzed for HIF-1 alpha/2 alpha, TGF-beta signaling components, and SNAIL1 proteins by immunoblot. Protein expression of HIF-1 alpha and HIF-2 alpha were significantly higher, while SNAIL1 had similar expression levels in ccRCC compared with the kidney cortex. HIF-2 alpha associated with poor cancer-specific survival, while HIF-1 alpha and SNAIL1 did not associate with survival. Moreover, HIF-2 alpha positively correlated with ALK5-ICD, pSMAD2/3, and PAI-1; HIF-1 alpha positively correlated with pSMAD2/3; SNAIL1 positively correlated with ALK5-FL, ALK5-ICD, pSMAD2/3, PAI-1, and HIF-2 alpha. Intriguingly, in vitro experiments performed under normoxic conditions revealed that ALK5 interacts with HIF-1 alpha and HIF-2 alpha, and promotes their expression and the expression of their target genes GLUT1 and CA9, in a VHL dependent manner. We found that ALK5 induces expression of HIF-1 alpha and HIF-2 alpha, through its kinase activity. Under hypoxic conditions, HIF-alpha proteins correlated with the activated TGF-beta signaling pathway. In conclusion, we reveal that ALK5 plays a pivotal role in synergistic crosstalk between TGF-beta signaling and hypoxia pathway, and that the interaction between ALK5 and HIF-alpha contributes to tumor progression.

Place, publisher, year, edition, pages
Taylor & Francis, 2019
Keywords
ALK5, clear cell renal cell carcinoma, HIF-α, SNAIL1, transforming growth factor-β
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-162654 (URN)10.1080/15384101.2019.1642069 (DOI)000478075700011 ()31339433 (PubMedID)
Available from: 2019-09-05 Created: 2019-09-05 Last updated: 2019-11-23Bibliographically approved
3. Expression and association of HIF-3α with hypoxic and TGF-β signalling components in renal cell carcinoma
Open this publication in new window or tab >>Expression and association of HIF-3α with hypoxic and TGF-β signalling components in renal cell carcinoma
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Gastroenterology and Hepatology
Research subject
Molecular Biology; biology
Identifiers
urn:nbn:se:umu:diva-164847 (URN)
Available from: 2019-11-04 Created: 2019-11-04 Last updated: 2019-11-25

Open Access in DiVA

spikblad(239 kB)6 downloads
File information
File name SPIKBLAD01.pdfFile size 239 kBChecksum SHA-512
db73e13bc29244bf6df35eeb919afd41cec107fe7bff2314950eeef8c53e16eafd5e4fac6599bf55971ab41497f82f3b6dbf83194e06c9d68828d42cb6c4e3f3
Type spikbladMimetype application/pdf
omslag(1903 kB)5 downloads
File information
File name COVER01.pdfFile size 1903 kBChecksum SHA-512
a28c97d5cd41be98f4311fc7b8428b53c342b581a4355fa34fdf609251f14241e08c1e28978dec14af955584328d5efed600780676ffa127152e621b95d29060
Type coverMimetype application/pdf
fulltext(2997 kB)15 downloads
File information
File name FULLTEXT02.pdfFile size 2997 kBChecksum SHA-512
107c74a593459a9d767dff540c67748aa33960a00df1ea3efd0ab0b51969bb947c55fb4d3120c2ed224faf5fa67038934632966f3d946d477efd78cf2378dba8
Type fulltextMimetype application/pdf

Authority records BETA

Aripaka, Karthik

Search in DiVA

By author/editor
Aripaka, Karthik
By organisation
Department of Medical Biosciences
Cancer and OncologyCell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
Total: 15 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 159 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf