umu.sePublications
4344454647484946 of 245
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Elektrifiering av personbilar på Tomtebo, Umeå: Electrifications of passenger cars at Tomtebo, Umeå
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
2019 (Swedish)Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

In the future, new fuels will be sought to minimize the carbon footprint on Earth. With electric vehicles becoming a growing trend there is an annual increase in hybrid and electric cars, even electrified buses have become more convenient. The new electric vehicles will then be a load on the electricity grid when recharging is required, sometimes during the sensitive hours of the day where other power requirements are greater. The purpose of this thesis was to gain a deeper understanding of how the Swedish electricity grid is structured and also answer the questions if the area named Tomtebo will be able to handle an electrification of passenger cars, and also what the power forecast will look like. An excel model, developed by Sweco, is used for the calculations and later on there is an evaluation of this model if it can be applied to smaller areas and if any improvements can be made towards it. The electric car load on the electricity grid is based on three possible scenarios referred from a report by Sweco and using the excel model to calculate the power requirement of the three scenarios with different traffic works on electricity. Scenario one corresponds to today's electrification degree on traffic work, scenario two corresponds to double electrification degree on traffic work and in scenario three, a full electrification as well as a new traffic hierarchy with more public transports will be used, according to the report by Sweco, resulting in less power requirements for traffic. In all three scenarios, it is assumed that the electric car will be charged at night with a charging power of 2.3 kW, this corresponds to charging directly from power outlet. Tomtebo is a residential area that is being expanded and is expected to grow in the coming years and the population there are mostly younger families, which gives the probability of investment of a fossil-free passenger car increase. In order to estimate the proportion of electric cars for the area, Statistics Sweden and Region facts have been used to estimate the amount of cars at Tomtebo. In Umeå there is a total of 1,400 electric cars and 95 of these were likely to be at Tomtebo. Out of this amount there is plugin hybrids, PHEV, and pure electric cars, BEV, which gave a distribution 75/25 percent according to data from national statistics. With a known number of cars, an itinerary was required which could be probable around twenty kilometers. In the Excel model, values were applied for scenario one, which gave the power requirement for the 95 cars a total of 18 kW per hour. With a grid that has a total power up to 3.7 MW per hour then the cars' power requirements are a minimal burden towards it, furthermore an equivalent result came from both scenarios two and three. With these three results came the conclusion that with the amount of cars available there today no major load was done on the electricity grid and thus a greater number of cars were required. Umeå aims to reach 200,000 inhabitants by the year of 2050, which would then give Tomtebo 12,000 residents and this would result in an estimated 6,100 cars there. Of these with today's distribution there would then be 200 electric cars but since this scenario is so far ahead in the future it was assumed that all vehicles in 2050 would be an electric car, which then leads to it being fully electrified at Tomtebo. The 6,100 electric cars power provided 6 MW of total power demand for today's electricity grid, which means that it won’t work in the future. To find the breaking point for how many electric cars the gird can handle it was assumed that all Tomtebo's cars today, corresponding to 3,780 cars, would be electric cars and by moving the charge schedule to early morning, when the demand was much lower, the result gave that the grid could handle about that many cars. What is important to understand is that the electricity grid does not have a maximum ceiling for demand, but it all works about equilibrium where one strives for a consistent power balance on all

iv hours of the day. If the consumers need more power then the electricity companies transfer it but an under-dimensioned infrastructure can put a stop to this which might be the case in the future. When the question whether Tomtebo's electricity grid can handle the load, the answer is that a full electrification of Tomtebo is entirely possible but that future investments are something that should be reviewed. This result from the excel model using the parameters and assumptions reflects the reality. The difficult thing about using the model in my opinion is the estimation of car numbers where in a city like Umeå where there does not exist any cameras or registers of which car type is moving where, which it does on others places, such as Gothenburg and Stockholm. Furthermore, there are thoughts about the design of the model as well also the question of the depth of battery but this is left out here but can be read under the relevant section. What controls how quickly a changeover from fossil-fueled to non-fossil vehicles is the result of instruments where subsidies and taxation come into focus, then of course laws and regulations. What makes it so difficult to estimate what the future will look like in theory is that tomorrow can have a new law leaving only non-fossil vehicles.

Abstract [sv]

I framtiden eftersträvas nya drivmedel för att minimera klimatavtrycket på jorden. Med detta har eldrivna fordon blivit en växande trend där det syns en årlig ökning av personbilstyperna hybrid- samt elbilar, även elektrifierade bussar har blivit fler. De nya elfordonen kommer belasta elnätet då laddning krävs, ibland på dygnets allt känsligare timmar där övrigt effektbehovet är större. Syftet med detta examensarbete var att få en djupare förståelse i hur svenskt elnät är uppbyggt samt även besvara frågorna om området Tomtebo kommer klara av en elektrifiering av personbilar, och därtill, även hur effektprognosen för detta kommer se ut. För beräkningarna nyttjas en excelmodell framtagen av Sweco där en utvärdering om denna modell går applicera på mindre områden och om eventuella förbättringar kan göras. Elbilarnas belastning på elnätet ställs upp utifrån tre tilltänkta scenarion kopplade från en rapport av Sweco och med hjälp av excelmodellen beräknas effektbehovet eller belastningen fram. Excelmodellen behandlar dessa tre scenarion med olika trafikarbeten på el, där scenario ett motsvarar dagens elektrifieringsgrad på trafikarbetet, scenario två motsvarar dubbel elektrifieringsgrad på trafikarbetet och i scenario tre, en full elektrifiering samt också en ny trafikhierarki där man med hjälp av rapporten från Sweco menar att det kommer användas mer kollektivtrafik som resulterar i mindre effektbehov för trafiken. Det kommer i alla tre scenarion antas att elbilen laddas på natten av typen långsamladdning vilket då ger en laddningseffekt på 2.3 kW, detta motsvarar då laddning direkt från eluttaget. Tomtebo är ett bostadsområde som byggs ut och förväntas växa kommande år dessutom så är befolkningen där mest yngre familjer, med detta ges sannolikheten att chansen till en fossilfri personbil ökar. För att uppskatta andelen elbilar för området har SCB samt Regionfakta används och de gav att i Umeå finns totalt 1 400 elbilar och 95 av dessa uppskattades finnas på Tomtebo. Utifrån den mängden elbilar uppskattades mängden plugin hybrider, PHEV, samt rena elbilar, BEV, vilket gav en fördelning 75/25 procent. Med känt antal bilar krävdes en uppskattning av resväg vilket kunde uppskattas till två mil. I excelmodellen applicerades värden in för scenario ett vilket gav effektbehov för de 95 bilarna en total effekt på 18 kW per timme. Med ett nät som belastas med totala effekter upp mot 3.7 MW per timme så är bilarnas effektbehov en minimal belastning och ett likvärdigt resultat kom av både scenario två och tre. Med dessa tre resultat kom slutsatsen att med den mängd bilar som finns där idag kommer ingen större belastning ske på elnätet och därmed krävdes en större mängd bilar. Umeå har som kommunmål att 2050 uppnå 200 000 invånare vilket då skulle ge Tomtebo 12 000 invånare och detta skulle resultera i att det finns uppskattningsvis 6 100 bilar där. Av dessa med dagens fördelning skulle det då finnas 200 elbilar men då detta scenario är så långt fram i framtiden antogs att alla fordon år 2050 skulle vara en elbil vilket då leder till att det är fullt elektrifierat på Tomtebo. De 6 100 elbilarnas effekt gav 6 MW totalt effektbehov för dagens elnät vilket i framtiden mest troligt gör att det inte skulle klara av det. För att då finna brytpunkten för hur många elbilar som nätet klarar av antogs att Tomtebos alla bilar idag, motsvarande 3 780 stycken, skulle vara elbilar och genom att förflytta långsamladdningsschemat till tidigt morgon kunde ett resultat som tyder på att elnätet bör klara av ungefär så många bilar.

ii Det som är viktigt att förstå är att elnätet inte har ett maximalt tak för belastning utan det hela handlar om jämvikt där man eftersträvar en jämn effektbalans på dygnets alla timmar. Behövs mer effekt hos konsument så överför elbolagen det men underdimensionerad infrastruktur kan sätta stopp för detta. På frågan om Tomtebos elnät klarar av belastningen så är svaret att en full elektrifiering av Tomtebo är fullt möjlig men att framtida investeringar är något som bör ses över. Angående excelmodellen kan man se att med de parametrar och antaganden som gjorts så ges ett resultat som speglar verkligheten. Det svåra med att använda modellen enligt min åsikt är uppskattandet av bilantal där det i en stad som Umeå inte existerar kameror eller kontroller kring vilken biltyp som rör sig var, vilket det gör på andra platser, exempelvis Göteborg och Stockholm. Vidare finns tankar kring utformning av modellen samt även fundering kring urladdningsdjup men detta tas inte upp här utan går att läsa under det relevanta avsnittet. Det som styr hur snabbt en omväxling från fossildrivna- till ickefossila fordon sker är till resultat av styrmedel där subventioner och beskattning kommer i fokus, sen självklart lagar och regler. Det som gör att det är så svårt att uppskatta hur framtiden kommer att se ut i teorin är att morgondagen kan ha en ny lag där endast ickefossila fordon skall existera.

Place, publisher, year, edition, pages
2019. , p. 27
Keywords [sv]
Elektrifiering, personbilar, Umeå, Tomtebo
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:umu:diva-164954OAI: oai:DiVA.org:umu-164954DiVA, id: diva2:1367997
External cooperation
Umeå energi
Subject / course
Energiteknik
Educational program
Bachelor of Science Programme in Energy Engineering
Supervisors
Examiners
Available from: 2019-11-06 Created: 2019-11-05 Last updated: 2019-11-05Bibliographically approved

Open Access in DiVA

Elektrifiering av personbilar Tomtebo, Umeå(2057 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 2057 kBChecksum SHA-512
3614bb49da03c122ff49699fbc0d0b0ed7ef50625860e690d2e2a44c1583f5dc9dfbc45569bed9e1c4cd10f7b69b24bb84b17fcec7a991692d0f19882813a7a9
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Andersson, Victor
By organisation
Department of Applied Physics and Electronics
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 3 hits
4344454647484946 of 245
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf