DEG10 contributes to mitochondrial proteostasis, root growth, and seed yield in ArabidopsisShow others and affiliations
2019 (English)In: Journal of Experimental Botany, ISSN 0022-0957, E-ISSN 1460-2431, Vol. 70, no 19, p. 5423-5436Article in journal (Refereed) Published
Abstract [en]
Maintaining mitochondrial proteome integrity is especially important under stress conditions to ensure a continued ATP supply for protection and adaptation responses in plants. Deg/HtrA proteases are important factors in the cellular protein quality control system, but little is known about their function in mitochondria. Here we analyzed the expression pattern and physiological function of Arabidopsis thaliana DEG10, which has homologs in all photosynthetic eukaryotes. Both expression of DEG10:GFP fusion proteins and immunoblotting after cell fractionation showed an unambiguous subcellular localization exclusively in mitochondria. DEG10 promoter:GUS fusion constructs showed that DEG10 is expressed in trichomes but also in the vascular tissue of roots and aboveground organs. DEG10 loss-of-function mutants were impaired in root elongation, especially at elevated temperature. Quantitative proteome analysis revealed concomitant changes in the abundance of mitochondrial respiratory chain components and assembly factors, which partially appeared to depend on altered mitochondrial retrograde signaling. Under field conditions, lack of DEG10 caused a decrease in seed production. Taken together, our findings demonstrate that DEG10 affects mitochondrial proteostasis, is required for optimal root development and seed set under challenging environmental conditions, and thus contributes to stress tolerance of plants.
Place, publisher, year, edition, pages
Oxford University Press, 2019. Vol. 70, no 19, p. 5423-5436
Keywords [en]
Arabidopsis, Deg proteases, mitochondria, proteome, root, seed yield, temperature stress, G10, which has homologs in all photosynthetic eukaryotes. Both pression of DEG10:GFP fusion proteins and immunoblotting after cell actionation showed an unambiguous subcellular localization exclusively mitochondria. DEG10 promoter:GUS fusion constructs showed that DEG10 expressed in trichomes but also in the vascular tissue of roots and oveground organs. DEG10 loss-of-function mutants were impaired in root ongation, especially at elevated temperature. Quantitative proteome alysis revealed concomitant changes in the abundance of mitochondrial spiratory chain components and assembly factors, which partially peared to depend on altered mitochondrial retrograde signaling. Under eld conditions, lack of DEG10 caused a decrease in seed production. ken together, our findings demonstrate that DEG10 affects tochondrial proteostasis, is required for optimal root development and ed set under challenging environmental conditions, and thus ntributes to stress tolerance of plants.
National Category
Botany
Identifiers
URN: urn:nbn:se:umu:diva-164890DOI: 10.1093/jxb/erz294ISI: 000491240900029PubMedID: 31225599OAI: oai:DiVA.org:umu-164890DiVA, id: diva2:1368121
Funder
Swedish Energy Agency, 2012-0058892019-11-062019-11-062019-11-07Bibliographically approved