umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Socioeconomic factors affect treatment delivery for patients with low grade glioma: a Swedish population-based study
Vise andre og tillknytning
2020 (engelsk)Inngår i: Journal of Neuro-Oncology, ISSN 0167-594X, E-ISSN 1573-7373, Vol. 146, s. 329-337Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Background: Despite aspirations to achieve equality in healthcare we know that socioeconomic differences exist and may affect treatment and patient outcome, also in serious diseases such as cancer. We investigated disparities in neurosurgical care and outcome for patients with low-grade glioma (LGG).

Methods: In this nationwide registry-based study, patients who had undergone surgery for LGG during 2005–2015 were identified (n = 547) through the Swedish Brain Tumor Registry. We linked data to multiple national registries with individual level data on income, education and comorbidity and analyzed the association of disease characteristics, surgical management and outcome, with levels of income, education and sex.

Results: Patients with either low income, low education or female gender showed worse pre-operative performance status. Patients with low income or education also had more comorbidities and those with low education endured longer waiting times for surgery. Median time from radiological imaging to surgery was 51 days (Q1–3 27–191) for patients with low education, compared to 32 days (Q1–3 20–80) for patients with high education (p = 0.006). Differences in waiting time over educational levels remained significant after stratification for age, comorbidity, preoperative performance status, and tumor size. Overall survival was better for patients with high income or high education, but income- and education-related survival differences were not significant after adjustment for age and comorbidity. The type of surgical procedure or complications did not differ over socioeconomic groups or sex.

Conclusion: The neurosurgical care for LGG in Sweden, a society with universal healthcare, displays differences that can be related to socioeconomic factors.

sted, utgiver, år, opplag, sider
Springer, 2020. Vol. 146, s. 329-337
Emneord [en]
Diffuse low-grade glioma, Social disparities, Equal care, Glioma, surgery, Brain neoplasm, Neurosurgery
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-167152DOI: 10.1007/s11060-019-03378-7ISI: 000504589800001PubMedID: 31883050OAI: oai:DiVA.org:umu-167152DiVA, id: diva2:1384494
Forskningsfinansiär
Swedish Research Council, 2017-00944Tilgjengelig fra: 2020-01-10 Laget: 2020-01-10 Sist oppdatert: 2020-03-24bibliografisk kontrollert

Open Access i DiVA

fulltext(761 kB)19 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 761 kBChecksum SHA-512
0386713c50b75dab840d46327b84159ca25843dfe0eb77a45e839d9bcffee268a296b35b461fab772a3712fe4640a6a8772b274d0d0316e20a2189341b59e712
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Henriksson, Roger

Søk i DiVA

Av forfatter/redaktør
Carstam, LouiseHenriksson, Roger
Av organisasjonen
I samme tidsskrift
Journal of Neuro-Oncology

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 19 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 47 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf