umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt150",{id:"formSmash:upper:j_idt147:j_idt150",widgetVar:"widget_formSmash_upper_j_idt147_j_idt150",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On the Ising problem and some matrix operationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Umeå: Matematik och matematisk statistik , 2007. , p. 7
##### Series

Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 37
##### Keywords [en]

Ising problem, phase tansition, matrix multiplicatoin, matrix inversion
##### National Category

Discrete Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-1129ISBN: 987-91-7264-323-9 (print)OAI: oai:DiVA.org:umu-1129DiVA, id: diva2:140305
##### Public defence

2007-05-31, MA 121, MIT, Umeå, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt466",{id:"formSmash:j_idt466",widgetVar:"widget_formSmash_j_idt466",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt472",{id:"formSmash:j_idt472",widgetVar:"widget_formSmash_j_idt472",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt478",{id:"formSmash:j_idt478",widgetVar:"widget_formSmash_j_idt478",multiple:true}); Available from: 2007-05-10 Created: 2007-05-10 Last updated: 2011-04-21Bibliographically approved
##### List of papers

The first part of the dissertation concerns the Ising problem proposed to Ernst Ising by his supervisor Wilhelm Lenz in the early 20s. The Ising model, or perhaps more correctly the Lenz-Ising model, tries to capture the behaviour of phase transitions, i.e. how local rules of engagement can produce large scale behaviour.

Two decades later Lars Onsager solved the Ising problem for the quadratic lattice without an outer field. Using his ideas solutions for other lattices in two dimensions have been constructed. We describe a method for calculating the Ising partition function for immense square grids, up to linear order 320 (i.e. 102400 vertices).

In three dimensions however only a few results are known. One of the most important unanswered questions is at which temperature the Ising model has its phase transition. In this dissertation it is shown that an upper bound for the critical coupling K_{c}, the inverse absolute temperature, is 0.29 for the tree dimensional cubic lattice.

To be able to get more information one has to use different statistical methods. We describe one sampling method that can use simple state generation like the Metropolis algorithm for large lattices. We also discuss how to reconstruct the entropy from the model, in order to obtain parameters as the free energy.

The Ising model gives a partition function associated with all finite graphs. In this dissertation we show that a number of interesting graph invariants can be calculated from the coefficients of the Ising partition function. We also give some interesting observations about the partition function in general and show that there are, for any *N*, *N* non-isomorphic graphs with the same Ising partition function.

The second part of the dissertation is about matrix operations. We consider the problem of multiplying them when the entries are elements in a finite semiring or in an additively finitely generated semiring. We describe a method that uses O(n^{3} / log *n*) arithmetic operations.

We also consider the problem of reducing *n x n* matrices over a finite field of size q using O(n^{2} / log_{q} *n*) row operations in the worst case.

1. Series expansion for the density of states of the Ising and Potts models$(function(){PrimeFaces.cw("OverlayPanel","overlay140299",{id:"formSmash:j_idt531:0:j_idt536",widgetVar:"overlay140299",target:"formSmash:j_idt531:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Computation of the Ising partition function for two-dimensional square grids$(function(){PrimeFaces.cw("OverlayPanel","overlay147355",{id:"formSmash:j_idt531:1:j_idt536",widgetVar:"overlay147355",target:"formSmash:j_idt531:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. A Monte Carlo sampling scheme for the Ising model$(function(){PrimeFaces.cw("OverlayPanel","overlay140301",{id:"formSmash:j_idt531:2:j_idt536",widgetVar:"overlay140301",target:"formSmash:j_idt531:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. The Multivariate Ising Polynomial of a Graph$(function(){PrimeFaces.cw("OverlayPanel","overlay140302",{id:"formSmash:j_idt531:3:j_idt536",widgetVar:"overlay140302",target:"formSmash:j_idt531:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Fast multiplication of matrices over a finitely generated semiring$(function(){PrimeFaces.cw("OverlayPanel","overlay140303",{id:"formSmash:j_idt531:4:j_idt536",widgetVar:"overlay140303",target:"formSmash:j_idt531:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. On the complexity of matrix reduction over finite fields$(function(){PrimeFaces.cw("OverlayPanel","overlay147266",{id:"formSmash:j_idt531:5:j_idt536",widgetVar:"overlay147266",target:"formSmash:j_idt531:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1256",{id:"formSmash:j_idt1256",widgetVar:"widget_formSmash_j_idt1256",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1310",{id:"formSmash:lower:j_idt1310",widgetVar:"widget_formSmash_lower_j_idt1310",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1311_j_idt1313",{id:"formSmash:lower:j_idt1311:j_idt1313",widgetVar:"widget_formSmash_lower_j_idt1311_j_idt1313",target:"formSmash:lower:j_idt1311:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});