umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mucosal and cutaneous papillomaviruses interact differently with the attachment receptor heparan sulfate on the cell surface.
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
Vise andre og tillknytning
(engelsk)Manuskript (Annet vitenskapelig)
Identifikatorer
URN: urn:nbn:se:umu:diva-4618OAI: oai:DiVA.org:umu-4618DiVA, id: diva2:143791
Tilgjengelig fra: 2005-06-08 Laget: 2005-06-08 Sist oppdatert: 2018-06-09bibliografisk kontrollert
Inngår i avhandling
1. Papillomavirus binding and entry: The heparan sulfate receptor and inhibition by lactoferrin
Åpne denne publikasjonen i ny fane eller vindu >>Papillomavirus binding and entry: The heparan sulfate receptor and inhibition by lactoferrin
2005 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Papillomaviruses (PVs) infect epithelial cells and are the main causative agent of cervical carcinoma. There are today more than a hundred different PV types and these can be divided into high risk and low risk types. They infect differentiating epithelial cells which make it cumbersome to propagate and produce human papillomavirus (HPV) virions. A common method to study HPV infection is to use HPV virus like particles (VLPs) produced in recombinant eukaryotic expression systems. Glycosaminoglycans (GAGs) have been described as an initial attachment receptor for several viruses. Our aim was to study the interactions between HPV VLPs and different GAGs to determine how these could affect binding and internalization. We found that soluble heparin was the best GAG inhibitor of HPV-16 VLP binding followed by heparan sulfate of mucosal origin. We could also see that CHO cells deficient in GAG expression had a reduced ability to bind VLPs, as did cells pretreated with heparinase III. Our results suggested a primary interaction between HPV and heparin sulfate. To be able to study the early steps of internalization we developed a method where we conjugated the CFDA-SE dye to the surface of VLPs. CFDA-SE is activated by cellular esterases inside the cell. This renders the particle fluorescent and thereby visible in flow cytometry analysis. With this new technique we found that entry of the mucosal HPV-6 and HPV-16 was inhibited by heparin. We could also detect differences between mucosal HPV-16 and cutaneous HPV-5 when these where pre-incubated together with GAGs. The cutaneous PV type was not inhibited by heparin to as high degree as the mucosal type. This might be explained by charge differences in the capsid. The mucosal capsid seems to be more positively charged than the epithelial type which should result in a higher affinity for the negatively charged GAGs. Also, we report for the first time that HPV-5 uses a clathrin mediated internalization process. It has been reported for other viruses such as herpes simplex virus (HSV) that lactoferrin, a protein found in high concentrations in breast milk and vaginal fluids could inhibit infection. Interestingly, HSV also use heparan sulfate as a primary attachment molecule. We wanted to investigate if lactoferrin and lactoferricin could have an effect on HPV binding and internalization. We pre-treated HPV-16 VLPs with lactoferrin of bovine or human origin before infection. After incubation we could detect reduced levels of both bound and internalized HPV VLPs to HaCaT cells. In this case, lactoferrin of bovine origin proved to be more efficient in inhibiting both binding and internalization. To further investigate this we used the N-terminal part of lactoferrin, lactoferricin, to study any possible inhibitory effects. Here we found that lactoferricin of bovine origin was a more potent inhibitor of binding, while human lactoferricin was more effective in inhibiting internalization. This could in part be explained by folding differences between these two related proteins. This work further strengthens the proposed interaction between HS and PV for initial interaction and for the first time show charge depending differences between cutaneous and mucosal type binding and internalization and also that lactoferrin and lactoferricin, parts of the innate immune system inhibit PV binding and internalization in vivo.

Publisher
s. 62
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 963
Identifikatorer
urn:nbn:se:umu:diva-550 (URN)
Disputas
2005-05-20, 00:00 (engelsk)
Tilgjengelig fra: 2005-06-08 Laget: 2005-06-08 Sist oppdatert: 2009-11-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Evander, Magnus

Søk i DiVA

Av forfatter/redaktør
Evander, Magnus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 77 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf