umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Orbit and bundle stratification of controllability and observability matrix pairs in StratiGraph
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0002-9957-7728
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Högpresterande beräkningscentrum norr (HPC2N).
2004 (Engelska)Ingår i: Proceedings MTNS 2004Artikel i tidskrift (Refereegranskat) Published
Ort, förlag, år, upplaga, sidor
2004.
Identifikatorer
URN: urn:nbn:se:umu:diva-5401OAI: oai:DiVA.org:umu-5401DiVA, id: diva2:144906
Tillgänglig från: 2006-10-11 Skapad: 2006-10-11 Senast uppdaterad: 2019-06-26
Ingår i avhandling
1. Software tools for matrix canonical computations and web-based software library environments
Öppna denna publikation i ny flik eller fönster >>Software tools for matrix canonical computations and web-based software library environments
2006 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This dissertation addresses the development and use of novel software tools and environments for the computation and visualization of canonical information as well as stratification hierarchies for matrices and matrix pencils.

The simplest standard shape to which a matrix pencil with a given set of eigenvalues can be reduced is called the Kronecker canonical form (KCF). The KCF of a matrix pencil is unique, and all pencils in the manifold of strictly equivalent pencils - collectively termed the orbit - can be reduced to the same canonical form and so have the same canonical structure. For a problem with fixed input size, all orbits are related under small perturbations. These relationships can be represented in a closure hierarchy with a corresponding graph depicting the stratification of these orbits. Since degenerate canonical structures are common in many applications, software tools to determine canonical information, especially under small perturbations, are central to understanding the behavior of these problems.

The focus in this dissertation is the development of a software tool called StratiGraph. Its purpose is the computation and visualization of stratification graphs of orbits and bundles (i.e., union of orbits in which the eigenvalues may change) for matrices and matrix pencils. It also supports matrix pairs, which are common in control systems. StratiGraph is extensible by design, and a well documented plug-in feature enables it, for example, to communicate with Matlab(TM). The use and associated benefits of StratiGraph are illustrated via numerous examples. Implementation considerations such as flexible software design, suitable data representations, and good and efficient graph layout algorithms are also discussed.

A way to estimate upper and lower bounds on the distance between an input S and other orbits is presented. The lower bounds are of Eckhart-Young type, based on the matrix representation of the associated tangent spaces. The upper bounds are computed as the Frobenius norm F of a perturbation such that S + F is in the manifold defining a specified orbit. Using associated plug-ins to StratiGraph this information can be computed in Matlab, while visualization alongside other canonical information remains within StratiGraph itself.

Also, a proposal of functionality and structure of a framework for computation of matrix canonical structure is presented. Robust, well-known algorithms, as well algorithms improved and developed in this work, are used. The framework is implemented as a prototype Matlab toolbox. The intention is to collect software for computing canonical structures as well as for computing bounds and to integrate it with the theory of stratification into a powerful new environment called the MCS toolbox.

Finally, a set of utilities for generating web computing environments related to mathematical and engineering library software is presented. The web interface can be accessed from a standard web browser with no need for additional software installation on the local machine. Integration with the control and systems library SLICOT further demonstrates the efficacy of this approach.

Ort, förlag, år, upplaga, sidor
Umeå: Datavetenskap, 2006. s. 30
Serie
Report / UMINF, ISSN 0348-0542 ; 06.30
Nyckelord
Canonical structure, Jordan canonical form, controllability, StratiGraph, Matlab toolbox, Kronecker canonical form, matrix, matrix pencil, perturbation theory, closure hirerarchy, matrix stratification, control system, observability
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
urn:nbn:se:umu:diva-890 (URN)91-7264-144-X (ISBN)
Disputation
2006-11-03, MA121, MIT, Umeå Universitet, Umeå, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2006-10-11 Skapad: 2006-10-11 Senast uppdaterad: 2019-06-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Elmroth, ErikJohansson, PedherJohansson, StefanKågström, Bo

Sök vidare i DiVA

Av författaren/redaktören
Elmroth, ErikJohansson, PedherJohansson, StefanKågström, Bo
Av organisationen
Institutionen för datavetenskapHögpresterande beräkningscentrum norr (HPC2N)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 345 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf