Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Radar observability of near-Earth objects using EISCAT 3D
Umeå University, Faculty of Science and Technology, Department of Physics. Swedish Institute of Space Physics (IRF), Kiruna, Sweden.ORCID iD: 0000-0002-6371-1016
2020 (English)In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 38, no 4, p. 861-879Article in journal (Refereed) Published
Abstract [en]

Radar observations can be used to obtain accurate orbital elements for near-Earth objects (NEOs) as a result of the very accurate range and range rate measureables. These observations allow the prediction of NEO orbits further into the future and also provide more information about the properties of the NEO population. This study evaluates the observability of NEOs with the EISCAT 3D 233 MHz 5 MW high-power, large-aperture radar, which is currently under construction. Three different populations are considered, namely NEOs passing by the Earth with a size distribution extrapolated from fireball statistics, catalogued NEOs detected with ground-based optical telescopes and temporarily captured NEOs, i.e. mini-moons. Two types of observation schemes are evaluated, namely the serendipitous discovery of unknown NEOs passing the radar beam and the post-discovery tracking of NEOs using a priori orbital elements. The results indicate that 60-1200 objects per year, with diameters D > 0.01 m, can be discovered. Assuming the current NEO discovery rate, approximately 20 objects per year can be tracked post-discovery near the closest approach to Earth. Only a marginally smaller number of tracking opportunities are also possible for the existing EISCAT ultra-high frequency (UHF) system. The mini-moon study, which used a theoretical population model, orbital propagation, and a model for radar scanning, indicates that approximately seven objects per year can be discovered using 8 %-16% of the total radar time. If all mini-moons had known orbits, approximately 80-160 objects per year could be tracked using a priori orbital elements. The results of this study indicate that it is feasible to perform routine NEO post-discovery tracking observations using both the existing EISCAT UHF radar and the upcoming EISCAT 3D radar. Most detectable objects are within 1 lunar distance (LD) of the radar. Such observations would complement the capabilities of the more powerful planetary radars that typically observe objects further away from Earth. It is also plausible that EISCAT 3D could be used as a novel type of an instrument for NEO discovery, assuming that a sufficiently large amount of radar time can be used. This could be achieved, for example by time-sharing with ionospheric and space-debris-observing modes.

Place, publisher, year, edition, pages
Nicolaus Copernicus University Press, 2020. Vol. 38, no 4, p. 861-879
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:umu:diva-173891DOI: 10.5194/angeo-38-861-2020ISI: 000551466600001Scopus ID: 2-s2.0-85088393387OAI: oai:DiVA.org:umu-173891DiVA, id: diva2:1456648
Available from: 2020-08-06 Created: 2020-08-06 Last updated: 2023-03-24Bibliographically approved
In thesis
1. From meteors to space safety: dynamical models and radar measurements of space objects
Open this publication in new window or tab >>From meteors to space safety: dynamical models and radar measurements of space objects
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Från meteorer till rymdlägesbild : dynamiska modeller och radarmätningar av rymdobjekt
Abstract [en]

Every day the Earth's atmosphere is bombarded by 10-200 metric tons of dust-sized particles and larger pieces of material from space called meteoroids. Dust and meteoroids come from parent bodies such as comets and asteroids, which are remnants from the formation of the solar system. In addition to natural objects, geospace contains artificial satellites and space debris that needs to be monitored to reduce the risk of collisions. Studies of all these kinds of space objects form a cross-disciplinary research field that stretches from meteors to space safety

The primary goal of this thesis has been to rigorously connect measurements and their uncertainties with high-level analysis and dynamical simulations of distributions.

An automated radar data analysis algorithm was developed for meteor head echo measurements. The analysis algorithm is able to produce realistic uncertainties for each individual meteor event, including the meteoroid orbit. Many of the resulting probability distributions are non-Gaussian, which needs to be accounted for. The analysis algorithm was applied to interferometric high-power large-aperture MU radar data in a case study on high altitude meteors. The study found that 74 out of 106,000 meteors appeared higher than 130 km and a few confirmed detections reached up to 150 km altitude.

Comet 21P/Giacobini–Zinner is the parent body of the meteoroid stream giving rise to the October Draconid meteor shower. The meteoroid stream was simulated accounting for parent body orbital uncertainties to estimate meteor shower parameters. The simulation was able to model the unexpected mass distribution observed in the 2011 and 2012 October Draconids. It also successfully predicted a meteor outburst in 2018. Further, methods to reduce the computation time of meteoroid stream simulations using importance sampling were derived and implemented on a test model.

EISCAT radar measurements were performed to study space debris from the Kosmos-1408 satellite, which had been destroyed and fragmented in orbit on 15 November, 2021. A novel method to estimate the size distribution of debris objects was developed. Data from two EISCAT radars were used to demonstrate a new initial orbit determination technique, yielding good agreement with known catalogue orbits. Finally, the detectability of near-Earth objects (NEOs) with the EISCAT~3D radar currently under construction was simulated. It was predicted that as many as seven temporarily captured NEOs, i.e. minimoons, could be discovered per year depending on the amount of allocated observation time. The predictions also show that hundreds of NEOs could be tracked yearly to improve their orbits.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2022. p. 79
Series
IRF Scientific Report, ISSN 0284-1703 ; 315
Keywords
Meteors, meteor shower, atmosphere, meteoroids, meteoroid stream, small-body dynamics, solar system, comets, asteroids, near-Earth objects, space safety, space debris, radar, MU, EISCAT
National Category
Astronomy, Astrophysics and Cosmology Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:umu:diva-200702 (URN)978-91-7855-902-2 (ISBN)978-91-7855-903-9 (ISBN)
Public defence
2022-11-25, Ljusårssalen, Institutet för rymdfysik, Bengt Hultqvists väg 1, Kiruna, 09:00 (English)
Opponent
Supervisors
Available from: 2022-11-04 Created: 2022-10-31 Last updated: 2022-11-01Bibliographically approved

Open Access in DiVA

fulltext(4452 kB)193 downloads
File information
File name FULLTEXT01.pdfFile size 4452 kBChecksum SHA-512
45221bf5fc294672e692c4a0b5200ff008ac4acf68f83293fdd91d46f6a312914d9406069e841f116026c5e42eb226f0494f0ece2d9cb944e791f0b85a3cbaac
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Kastinen, Daniel

Search in DiVA

By author/editor
Kastinen, Daniel
By organisation
Department of Physics
In the same journal
Annales Geophysicae
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 193 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 293 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf