Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Escape to space or return to venus: ion flows measured by venus express
Umeå University, Faculty of Science and Technology, Department of Physics. (Institutet för Rymdfysik)ORCID iD: 0000-0003-3497-3209
2020 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Flykt till rymden eller retur till venus : jonflöden mätta av venus express (Swedish)
Abstract [en]

The present-day Venusian atmosphere is crushingly dense, extremely hot and arid. Yet, in its early history, Venus presumably had a massive amount of water, which, if spread evenly over the surface, provided a water depth of 10s to 100s of meters. Therefore, over the course of the atmospheric evolution, the water must have been removed from Venus. The main processes responsible for water loss can be catagorised into either diffusion into the surface materials or escape to space, where the focus of this thesis is the latter. Determining the contribution on the atmospheric evolution from each of these processes can help us understand how planetary atmospheres evolve, both here in our Solar System and in extra-solar systems, and tell us why Venus became so dry.

The water escape to space is determined by several processes, where the main processes are a consequence of the interaction between the Venusian atmosphere and the solar wind. As Venus does not have an intrinsic magnetic field, its atmosphere interacts directly with the solar wind, and creates a, so called, induced magnetosphere. The interaction causes part of the solar wind energy and momentum to be transferred to the upper atmospheric particles. The additional momentum may allow the ions to reach above escape energy and escape the planet. Therefore, the interaction between the atmosphere and the solar wind is important to study to determine the rate of escape of atmospheric constituents to space.

In this thesis, the escape of atmospheric constituents to space is investigated through measurements of the H+ and O+ ion flows. These ion flows were measured by the Ion Mass Analyser (IMA) on board the Venus Express spacecraft, which orbited Venus during 2006-2014. Using IMA measurements near the North Pole ionosphere, the ionospheric ion flows were shown to have a strong dusk-to-dawn component along the terminator, inside the collisional region of the atmosphere. From ion flow measurements in the magnetotail, the rate of escape of atmospheric H+ and O+ ions were shown to be affected by the solar cycle, with an average escape rate ratio near two, the stoichiometric ratio of water. The change is mainly attributed to the decrease in the net escape rates of H+, which is a result of the increase in return flows, i.e. ions that flow back towards Venus in the magnetotail. Furthermore, the O+ net escape rate increases as the amount of energy available in the upstream solar wind increases. The increase indicates, as expected, that a portion of the available energy in the upstream solar wind is transferred to the escaping ions. However, the total portion of energy transferred from the solar wind to the escaping ions decreases as the available upstream energy increases. Using the simple relation between the O+ escape rate and the upstream solar wind energy flux, the total atmospheric escape was extrapolated backwards in time, by accounting for the evolution of the solar wind parameters. The resulting total escape over the past 3.9 Ga can be translated into a global equivalent water depth of 0.02-0.6 m. This result cannot explain the massive historical water content on Venus.

Abstract [sv]

Venus atmosfär är idag tjock, het och extremt torr, men den har inte alltid varit sån. I dess tidigare historia fanns det troligtvis mycket vatten på Venus yta. Om man skulle tagit allt det vattnet och spridit den jämnt över hela Venus yta tror man att det skulle bli ett djup på nånstans mellan 10 meter till över 100 meter. Det betyder att en stor mängd vatten har försvunnit under Venus atmosfäriska historia. Det finns i huvudsak två processer som är kapabla till att ta bort vatten från Venus: antingen reagerar vattnet med ytan och sparas inuti Venus skorpa eller kärna, eller så flyr den ut till rymden. I den här avhandlingen har fokuset legat på den senare av de två processerna. Genom att undersöka vilken av dessa processer som har haft störst inverkan på Venus atmosfäriska evolution och dess förlust av vatten kan vi förstå hur olika planeters atmosfärer utvecklas, både här i vårt eget solsystem och i extrasolära system, och specifikt hjälpa oss förstå varför Venus blivit så torr.

Flykt av vatten till rymden påverkas av flera olika processer, varav de med störst inverkan är en konsekvens av interaktionen mellan Venus atmosfär och solvinden. Eftersom Venus inte har något eget inre magnetfält interagerar atmosfären direkt med solvinden och skapar en, vad man kallar, inducerad magnetosfär. Interaktionen gör så att en del av energin och rörelsemängden i solvinden överförs till partiklarna i Venus övre atmosfär. Den extra rörelsemängden gör så att jonerna i Venus övre atmosfär kan nå över flykthastigheten på ca 10 km/s och därmed fly från planeten. Därför är interaktionen mellan atmosfären och solvinden viktig att studera, för att förstå hur mycket partiklar som flyr från Venus.

I den här avhandlingen har flykten av atmosfäriska partiklar till rymden undersökts med hjälp av mätningar av flöden av vätejoner (H+) och syrejoner (O+). Dessa jonflöden har mätts av instrumentet Ion Mass Analyser (IMA), en del av ASPERA-4, ombord på satelliten Venus Express. Venus Express fanns i omloppsbana runt Venus under 2006-2014 och gav mätningar under dess mer än 3000 varv runt Venus. Dessa mätningar har i den här avhandlingen använts för att räkna ut medelvärden av jonflödena i både jonosfären (övre delen av atmosfären) och magnetosvansen (den långa förlängningen av den inducerade magnetosfären på nattsidan av Venus), för att undersöka solvindens inverkan på Venus atmosfäriska evolution.

Jonflöden mätta av IMA nära Venus nordpol visar att flödet inte endast rör sig från dag till natt, som tidigare hittats vid ekvatorn av den tidigare missionen Pioneer Venus. Istället har flödet en komponent längs med terminatorn, eller dag-natt linjen, från kväll mot morgon. Detta flöde finns ända ner på höjder där kollisioner är viktiga. Jonflöden mätta av IMA i Venus magnetosvans visar att flykten av H+ och O+ joner från atmosfären ändras över solcykeln, och att förhållandet mellan deras flykt ligger nära två, som indikerar att det kommer från vatten (två väteatomer och en syreatom). Ändringen i förhållandet kommer främst från att flyktflödet för H+ minskade, vilket till största delen beror på en ökning av returflöden, alltså joner som flödar tillbaka mot Venus i magnetosvansen. Dessutom ökade flykten av O+ när mängden energi tillgänglig i solvinden ökade. Denna ökning indikerar, som förväntat, att energi överförs från solvinden till jonerna, vilket leder till att jonerna kan fly från Venus. Dock minskade andelen energi som överfördes till jonerna när energin i solvinden uppströms ökade. Genom att använda en enkel relation mellan flykten av O+ och energiflödet i solvinden, och genom att ta hänsyn till evolutionen av solvinden, kan flykten extrapoleras bakåt i tiden. På så sätt kan man ta reda på hur mycket som totalt har flytt i form av joner från Venus under de senaste 3.9 miljarder åren. Den totala mängd som flytt kan översättas till ett vattendjup på 0.02-0.6 meter, om man antar att allt syre kommer från vatten och sprider vattnet jämnt över hela Venus yta. Den totala mängd vatten som flytt från Venus som joner, som beräknats här, kan inte beskriva hur den massiva mängd vatten på tiotals till hundratals meter, som man tror existerade på Venus i dess tidigare historia, försvunnit. Det betyder att Venus antingen inte hade så mycket vatten i dess tidigare historia som man tidigare trott, eller att den största mängden vatten istället försvunnit genom andra processer.

Place, publisher, year, edition, pages
Umeå: Umeå University , 2020. , p. 75
Series
IRF Scientific Report, ISSN 0284-1703 ; 311
Keywords [en]
Venus, water, escape, planetary physics, oxygen, O+, hydrogen, H+, ions, space physics, space plasma physics, Venus Express, ASPERA-4, IMA, spacecraft measurements
National Category
Fusion, Plasma and Space Physics
Research subject
Space and Plasma Physics
Identifiers
URN: urn:nbn:se:umu:diva-176014ISBN: 978-91-7855-379-2 (electronic)ISBN: 978-91-7855-378-5 (print)OAI: oai:DiVA.org:umu-176014DiVA, id: diva2:1477000
Public defence
2020-11-13, Ljusårssalen (Aula), Institutet för Rymdfysik, Bengt Hultqvist väg 1, Kiruna, 09:00 (English)
Opponent
Supervisors
Available from: 2020-10-23 Created: 2020-10-16 Last updated: 2021-11-30Bibliographically approved
List of papers
1. H+/O+ Escape Rate Ratio in the Venus Magnetotail and its Dependence on the Solar Cycle
Open this publication in new window or tab >>H+/O+ Escape Rate Ratio in the Venus Magnetotail and its Dependence on the Solar Cycle
Show others...
2018 (English)In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 20, p. 10805-10811Article in journal (Refereed) Published
Abstract [en]

A fundamental question for the atmospheric evolution of Venus is how much water-related material escapes from Venus to space. In this study, we calculate the nonthermal escape of H+ and O+ ions through the Venusian magnetotail and its dependence on the solar cycle. We separate 8 years of data obtained from the ion mass analyzer on Venus Express into solar minimum and maximum. The average escape of H+ decreased from 7.6.10(24) (solar minimum) to 2.1.10(24) s(-1) (solar maximum), while a smaller decrease was found for O+: 2.9.10(24) to 2.0.10(24) s(-1). As a result, the H+/O+ flux ratio decreases from 2.6 to 1.1. This implies that the escape of hydrogen and oxygen could have been below the stoichiometric ratio of water for Venus in its early history under the more active Sun.

Place, publisher, year, edition, pages
American Geophysical Union (AGU), 2018
National Category
Geophysics Subatomic Physics
Identifiers
urn:nbn:se:umu:diva-154361 (URN)10.1029/2018GL079454 (DOI)000451510500002 ()2-s2.0-85055202374 (Scopus ID)
Available from: 2018-12-17 Created: 2018-12-17 Last updated: 2022-04-04Bibliographically approved
2. Heavy Ion Flows in the Upper Ionosphere of the Venusian North Pole
Open this publication in new window or tab >>Heavy Ion Flows in the Upper Ionosphere of the Venusian North Pole
Show others...
2019 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 124, no 6, p. 4597-4607Article in journal (Refereed) Published
Abstract [en]

We investigate the heavy ion density and velocity in the Venusian upper ionosphere near the North Pole, using the Ion Mass Analyzer, a part of the Analyzer of Space Plasmas and Energetic Atoms 4, together with the magnetic field instruments on Venus Express. The measurements were made during June-July 2014, covering the aerobraking campaign with lowered altitude measurements (similar to 130 km). The plasma scale heights are similar to 15 km below 150-km altitude and similar to 200 km at 150-400-km altitude. A clear trend of dusk-to-dawn heavy ion flow across the polar ionosphere was found, with speeds of similar to 2-10 km/s. In addition, the flow has a significant downward radial velocity component. The flow pattern does not depend on the interplanetary magnetic field directions nor the ionospheric magnetization states. Instead, we suggest a thermal pressure gradient between the equatorial and polar terminator regions, induced by the decrease in density between the regions, as the dominant mechanism driving the ion flow. Plain Language Summary We have calculated the ion density and velocities in the Venusian polar ionosphere using measurements from the Ion Mass Analyzer on board the Venus Express spacecraft. During June-July 2014 the periapsis was lowered to similar to 130 km, which allowed for measurements down to low altitudes of the ionosphere near the North Pole. The plasma scale heights are similar to 15 km below 150-km altitude and similar to 200 km at 150-400 km, which is similar to what was found near the equatorial region by the Pioneer Venus mission. In addition, there is a clear trend of dusk-to-dawn flow, along the terminator, for the heavy ions. This is surprising, as a general flow from day-to-night is expected for the Venusian ionosphere due to the long nights and significant heating of the dayside upper atmosphere. The interplanetary magnetic field direction does not appear to affect the ion flow pattern. Instead, we propose a thermal pressure gradient as the dominant accelerating mechanism, induced by the decrease in density from the equator toward the pole.

Place, publisher, year, edition, pages
American Geophysical Union (AGU), 2019
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:umu:diva-162017 (URN)10.1029/2018JA026271 (DOI)000477723100049 ()2-s2.0-85067394643 (Scopus ID)
Available from: 2019-08-12 Created: 2019-08-12 Last updated: 2023-03-23Bibliographically approved
3. The Venusian Atmospheric Oxygen Ion Escape: Extrapolation to the Early Solar System
Open this publication in new window or tab >>The Venusian Atmospheric Oxygen Ion Escape: Extrapolation to the Early Solar System
Show others...
2020 (English)In: Journal of Geophysical Research - Planets, ISSN 2169-9097, E-ISSN 2169-9100, Vol. 125, no 3, article id e2019JE006336Article in journal (Refereed) Published
Abstract [en]

The present atmosphere of Venus contains almost no water, but recent measurements indicate that in its early history, Venus had an Earth-like ocean. Understanding how the Venusian atmosphere evolved is important not only for Venus itself but also for understanding the evolution of other planetary atmospheres. In this study, we quantify the escape rates of oxygen ions from the present Venus to infer the past of the Venusian atmosphere. We show that an extrapolation of the current escape rates back in time leads to the total escape of 0.02-0.6 m of a global equivalent layer of water. This implies that the loss of ions to space, inferred from the present state, cannot account for the loss of an historical Earth-like ocean. We find that the O+ escape rate increases with solar wind energy flux, where more energy available leads to a higher escape rate. Oppositely, the escape rate decreases slightly with increased extreme ultraviolet radiation (EUV) flux, though the small variation of EUV flux over the measured solar cycle may explain the weak dependency. These results indicate that there is not enough energy transferred from the solar wind to Venus' upper atmosphere that can lead to the escape of the atmosphere over the past 3.9 billion years. This means that the Venusian atmosphere did not have as much water in its atmosphere as previously assumed or the present-day escape rates do not represent the historical escape rates at Venus. Otherwise, some other mechanisms have acted to more effectively remove the water from the Venusian atmosphere. Plain Language Summary Today, Venus only has small amounts of water in its atmosphere. In its early history, Venus presumably contained an Earth-like ocean of several meters. The evolution of the atmosphere may have been caused by escape of atmospheric content to space. In this study, we investigate how much the escape of oxygen ions to space could have affected the atmospheric evolution for Venus from measurements of the present-day escape rates. Using measurements of oxygen ions in the vicinity of Venus, we show that the amount of energy available in the solar wind to be transferred to the upper atmosphere of Venus determines how much of the atmosphere escapes. From the evolution of the energy in the solar wind over the past 3.9 billion years, together with the relation between the solar wind energy and oxygen ion escape, we show that in total, about 0.02-0.6 m of water depth, if spread equally over the entire Venusian surface, was lost. This indicates that either Venus did not have as much water as previously assumed or the current escape rates are not representative of the historical escape rates. Otherwise, some other mechanisms must have acted to more effectively remove the water from Venus.

Place, publisher, year, edition, pages
American Geophysical Union (AGU), 2020
National Category
Geophysics Condensed Matter Physics
Identifiers
urn:nbn:se:umu:diva-173826 (URN)10.1029/2019JE006336 (DOI)000535277900021 ()2-s2.0-85082331769 (Scopus ID)
Available from: 2020-08-03 Created: 2020-08-03 Last updated: 2023-03-23Bibliographically approved
4. Global Venus-Solar wind coupling and oxygen ion escape
Open this publication in new window or tab >>Global Venus-Solar wind coupling and oxygen ion escape
Show others...
2021 (English)In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 48, no 4, article id e2020GL091213Article in journal (Refereed) Published
Abstract [en]

The present‐day Venusian atmosphere is dry, yet, in its earlier history a significant amount of water evidently existed. One important water loss process comes from the energy and momentum transfer from the solar wind to the atmospheric particles. Here, we used measurements from the Ion Mass Analyzer onboard Venus Express to derive a relation between the power in the upstream solar wind and the power leaving the atmosphere through oxygen ion escape in the Venusian magnetotail. We find that on average 0.01% of the available power is transferred, and that the percentage decreases as the available energy increases. For Mars the trend is similar, but the efficiency is higher. At Earth, the ion escape does not behave similarly, as the ion escape only increases after a threshold in the available energy is reached. These results indicate that the Venusian induced magnetosphere efficiently screens the atmosphere from the solar wind.

Place, publisher, year, edition, pages
American Geophysical Union (AGU), 2021
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:umu:diva-176001 (URN)10.1029/2020GL091213 (DOI)000620058900054 ()2-s2.0-85101128024 (Scopus ID)
Note

Originally included in thesis in manuscript form.

Available from: 2020-10-15 Created: 2020-10-15 Last updated: 2023-10-30Bibliographically approved
5. Return Flows in the Venusian Magnetotail Measured by Venus Express
Open this publication in new window or tab >>Return Flows in the Venusian Magnetotail Measured by Venus Express
(English)Manuscript (preprint) (Other academic)
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:umu:diva-176002 (URN)
Available from: 2020-10-15 Created: 2020-10-15 Last updated: 2020-10-19

Open Access in DiVA

fulltext(59514 kB)1786 downloads
File information
File name FULLTEXT01.pdfFile size 59514 kBChecksum SHA-512
febf52d682245ac832593ba97c261d0fd0d2a0efcd5a531a70ae435c52f7c2768a3077b5893e667e6fa00e34772b7caa4522e35ce072f155fd2a2da5669c3958
Type fulltextMimetype application/pdf
omslag(243 kB)0 downloads
File information
File name PREVIEW01.pngFile size 243 kBChecksum SHA-512
c6116d59b1d6484efff04370aa781b943e8b89cf9d6508ab1605322a11f67b651268265440670b0c75a4fcef6ff6c760ffb33a524a6fdc44864fd4da8759b4c5
Type coverMimetype image/png
spikblad(159 kB)54 downloads
File information
File name SPIKBLAD02.pdfFile size 159 kBChecksum SHA-512
ba0f61dde2532ffde1431a38f39856b0a84a3bc27e72881b2bb82dfd58031bd91f39b02a3e60b3a1fc8593f4be1759ed3486ee5a7360803bc7e632e6a387a88e
Type spikbladMimetype application/pdf

Authority records

Persson, Moa

Search in DiVA

By author/editor
Persson, Moa
By organisation
Department of Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 1788 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 3450 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf