umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Coupled map lattice approximations for spatially explicit individual-based models of ecology
Umeå universitet, Teknisk-naturvetenskaplig fakultet, Matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskaplig fakultet, Matematik och matematisk statistik.
2005 (engelsk)Inngår i: Bulletin of Mathematical Biology, ISSN 0092-8240, E-ISSN 1522-9602, Vol. 67, nr 4, s. 663-682Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Spatially explicit individual-based models are widely used in ecology but they are often difficult to treat analytically. Despite their intractability they often exhibit clear temporal and spatial patterning. We demonstrate how a spatially explicit individual-based model of scramble competition with local dispersal can be approximated by a stochastic coupled map lattice. The approximation disentangles the deterministic and stochastic element of local interaction and dispersal. We are thus able to understand the individual-based model through a simplified set of equations. In particular, we demonstrate that demographic noise leads to increased stability in the dynamics of locally dispersing single-species populations. The coupled map lattice approximation has general application to a range of spatially explicit individual-based models. It provides a new alternative to current approximation techniques, such as the method of moments and reaction–diffusion approximation, that captures both stochastic effects and large-scale patterning arising in individual-based models.

sted, utgiver, år, opplag, sider
2005. Vol. 67, nr 4, s. 663-682
HSV kategori
Forskningsprogram
matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-8159DOI: 10.1016/j.bulm.2004.09.006OAI: oai:DiVA.org:umu-8159DiVA, id: diva2:147830
Tilgjengelig fra: 2008-01-15 Laget: 2008-01-15 Sist oppdatert: 2018-06-09bibliografisk kontrollert
Inngår i avhandling
1. Modelling animal populations
Åpne denne publikasjonen i ny fane eller vindu >>Modelling animal populations
2004 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [sv]

This thesis consists of four papers, three papers about modelling animal populations and one paper about an area integral estimate for solutions of partial differential equations on non-smooth domains. The papers are:

I. Å. Brännström, Single species population models from first principles.

II. Å. Brännström and D. J. T. Sumpter, Stochastic analogues of deterministic single species population models.

III. Å. Brännström and D. J. T. Sumpter, Coupled map lattice approximations for spatially explicit individual-based models of ecology.

IV. Å. Brännström, An area integral estimate for higher order parabolic equations.

In the first paper we derive deterministic discrete single species population models with first order feedback, such as the Hassell and Beverton-Holt model, from first principles. The derivations build on the site based method of Sumpter & Broomhead (2001) and Johansson & Sumpter (2003). A three parameter generalisation of the Beverton-Holtmodel is also derived, and one of the parameters is shown to correspond directly to the underlying distribution of individuals.

The second paper is about constructing stochastic population models that incorporate a given deterministic skeleton. Using the Ricker model as an example, we construct several stochastic analogues and fit them to data using the method of maximum likelihood. The results show that an accurate stochastic population model is most important when the dynamics are periodic or chaotic, and that the two most common ways of constructing stochastic analogues, using additive normally distributed noise or multiplicative lognormally distributed noise, give models that fit the data well. The latter is also motivated on theoretical grounds.

In the third paper we approximate a spatially explicit individual-based model with a stochastic coupledmap lattice. The approximation effectively disentangles the deterministic and stochastic components of the model. Based on this approximation we argue that the stable population dynamics seen for short dispersal ranges is a consequence of increased stochasticity from local interactions and dispersal.

Finally, the fourth paper contains a proof that for solutions of higher order real homogeneous constant coefficient parabolic operators on Lipschitz cylinders, the area integral dominates the maximal function in the L2-norm.

Publisher
s. 18
Serie
Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 29
Emneord
population model, stochastic population model, population dynamics, discrete time model, Beverton-Holt model, Skellam model, Hassell model, Ricker model, first principles, coupled map lattice, CML, area integral, square function
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:umu:diva-205 (URN)91-7305-615-4 (ISBN)
Disputas
2004-03-29, 10:00 (engelsk)
Tilgjengelig fra: 2004-03-08 Laget: 2004-03-08 Sist oppdatert: 2018-06-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Brännström, Åke

Søk i DiVA

Av forfatter/redaktør
Brännström, Åke
Av organisasjonen
I samme tidsskrift
Bulletin of Mathematical Biology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 241 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf