umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
Vise andre og tillknytning
2008 (engelsk)Inngår i: BMC Bioinformatics, ISSN 1471-2105, E-ISSN 1471-2105, Vol. 9, s. 1-7, artikkel-id 106Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Background: Kernel-based classification and regression methods have been successfully applied to modelling a wide variety of biological data. The Kernel-based Orthogonal Projections to Latent Structures (K-OPLS) method offers unique properties facilitating separate modelling of predictive variation and structured noise in the feature space. While providing prediction results similar to other kernel-based methods, K-OPLS features enhanced interpretational capabilities; allowing detection of unanticipated systematic variation in the data such as instrumental drift, batch variability or unexpected biological variation.

Results: We demonstrate an implementation of the K-OPLS algorithm for MATLAB and R, licensed under the GNU GPL and available at http://www.sourceforge.net/projects/kopls/. The package includes essential functionality and documentation for model evaluation (using cross-validation), training and prediction of future samples. Incorporated is also a set of diagnostic tools and plot functions to simplify the visualisation of data, e.g. for detecting trends or for identification of outlying samples. The utility of the software package is demonstrated by means of a metabolic profiling data set from a biological study of hybrid aspen.

Conclusion: The properties of the K-OPLS method are well suited for analysis of biological data, which in conjunction with the availability of the outlined open-source package provides a comprehensive solution for kernel-based analysis in bioinformatics applications.

sted, utgiver, år, opplag, sider
BioMed Central, 2008. Vol. 9, s. 1-7, artikkel-id 106
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-9520DOI: 10.1186/1471-2105-9-106ISI: 000255282300001PubMedID: 18284666OAI: oai:DiVA.org:umu-9520DiVA, id: diva2:149191
Tilgjengelig fra: 2008-04-15 Laget: 2008-04-15 Sist oppdatert: 2019-08-07bibliografisk kontrollert

Open Access i DiVA

fulltext(558 kB)88 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 558 kBChecksum SHA-512
a752f4400016ac503a9608c1c58a15ddc75c3cccd41961827b6a4407d2f1ff3950efa835d17d4cb62eb077c4c6800ed7c9dae41a9ba6739ac8825406f9ff49a7
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Bylesjö, MaxTrygg, Johan

Søk i DiVA

Av forfatter/redaktør
Bylesjö, MaxTrygg, Johan
Av organisasjonen
I samme tidsskrift
BMC Bioinformatics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 88 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 164 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf