umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Robust Simulation-Based Estimation of ARMA Models
Umeå universitet, Samhällsvetenskaplig fakultet, Statistik.
2001 (Engelska)Ingår i: Journal of Computational and Graphical Statistics, Vol. 10, s. 370-387Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This article proposes a new approach to the robust estimation of a mixed autoregressive and moving average (ARMA) model. It is based on the indirect inference method that originally was proposed for models with an intractable likelihood function. The estimation algorithm proposed is based on an auxiliary autoregressive representation whose parameters are first estimated on the observed time series and then on data simulated from the ARMA model. To simulate data the parameters of the ARMA model have to be set. By varying these we can minimize a distance between the simulation-based and the observation-based auxiliary estimate. The argument of the minimum yields then an estimator for the parameterization of the ARMA model. This simulation-based estimation procedure inherits the properties of the auxiliary model estimator. For instance, robustness is achieved with GM estimators. An essential feature of the introduced estimator, compared to existing robust estimators for ARMA models, is its theoretical tractability that allows us to show consistency and asymptotic normality. Moreover, it is possible to characterize the influence function and the breakdown point of the estimator. In a small sample Monte Carlo study it is found that the new estimator performs fairly well when compared with existing procedures. Furthermore, with two real examples, we also compare the proposed inferential method with two different approaches based on outliers detection.

Ort, förlag, år, upplaga, sidor
2001. Vol. 10, s. 370-387
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-11963OAI: oai:DiVA.org:umu-11963DiVA, id: diva2:151634
Tillgänglig från: 2007-04-18 Skapad: 2007-04-18 Senast uppdaterad: 2018-06-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

de Luna, Xavier

Sök vidare i DiVA

Av författaren/redaktören
de Luna, Xavier
Av organisationen
Statistik
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 127 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf