Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessment of cerebrospinal fluid outflow conductance using constant-pressure infusion - a method with real time estimation of reliability
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Neurologi. Neurologi.ORCID-id: 0000-0001-6451-1940
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.ORCID-id: 0000-0002-2031-722X
2005 (Engelska)Ingår i: Physiological Measurement, ISSN 0967-3334, E-ISSN 1361-6579, Vol. 26, nr 6, s. 1137-1148Artikel i tidskrift (Refereegranskat) Published
Ort, förlag, år, upplaga, sidor
2005. Vol. 26, nr 6, s. 1137-1148
Identifikatorer
URN: urn:nbn:se:umu:diva-13949DOI: doi:10.1088/0967-3334/26/6/022PubMedID: 16311460Scopus ID: 2-s2.0-28544446237OAI: oai:DiVA.org:umu-13949DiVA, id: diva2:153620
Tillgänglig från: 2007-11-29 Skapad: 2007-11-29 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. Cerebrospinal fluid infusion methods: development and validation on patients with idiopathic normal pressure hydrocephalus
Öppna denna publikation i ny flik eller fönster >>Cerebrospinal fluid infusion methods: development and validation on patients with idiopathic normal pressure hydrocephalus
2007 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Cerebrospinal fluid (CSF) infusion tests can be used to estimate the dynamic properties of the CSF system. Idiopathic normal pressure hydrocephalus (INPH) is a syndrome signified by a disturbance to the CSF system, where the cause is unknown and the diagnosis is difficult to determine. As an aid in identifying patients with INPH who will improve after shunt surgery, infusion tests are commonly used to determine the outflow conductance (Cout), or outflow resistance (Rout=1/Cout), of the CSF system. The tests are also used to determine shunt function in vivo. The general aim of this thesis was to develop and validate CSF infusion methods, to investigate the dynamics of the CSF system. The methods should be applicable to patients with INPH, to aid in the quest to further improve the diagnosis and management of this syndrome.

An existing mathematical model describing the dynamics of the CSF system was further developed. The characteristics of the model were verified and the effect of expanding intracranial air on the intracranial pressure (ICP) was simulated. The simulations supported the recommendation to maintain sea-level pressure during air ambulance transportation of patients with suspected intracranial air.

A recently developed infusion apparatus was evaluated, on an experimental model as well as on a patient material. The repetitiveness in estimating Cout was found to be good. A statistically significant difference was found between the repeated Cout estimations in the patient group, indicating that there might have been a small physiological change introduced during the infusion test. A parameter, ∆Cout, was proposed and evaluated. It proved to reflect the reliability of individual Cout investigations in a clinically useful way, as well as to provide easily interpreted information.

An adaptive algorithm for assessment of Cout was developed and evaluated on a patient group. The new algorithm was shown to reduce the investigation time, from 60 minutes, by 14.3 ± 5.9 minutes (mean ± SD), p<0.01, without reducing the reliability of the estimated Cout below clinically relevant levels.

The relationship between ICP and CSF outflow was studied in a group of patients investigated for INPH. It was found that in the range of moderate increase from baseline pressure, the assumption of a pressure independent Rout was confirmed (p=0.5). However, at larger pressure increments, the relationship had a non-linear tendency (p<0.05). This indicates that the traditional view of a pressure independent Rout might have to be questioned in the region where ICP exceeds baseline pressure too much.

Infusion tests can be performed in different ways, where three main categories may be distinguished. The bolus infusion method was compared to the constant pressure and constant flow infusion methods, on an experimental model as well as on a patient material. When physiological pressure fluctuations were added to the model, significant differences were found in the determination of Cout in the range of clinical importance, i.e. low Cout (p<0.05). The finding was supported by the patient investigations, the difference was however not significant.

With the application of the new methods developed in this thesis, and the increased knowledge concerning relationships between CSF dynamic parameters, the CSF infusion test was further improved with the ability to increase measurement reliability in a reduced time. This constitutes a good basis to perform a large multi-centre study with the main goal to determine the predictive value of the parameter Cout.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2007. s. 74
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 1116
Nyckelord
Infusion test, idiopathic normal pressure hydrocephalus, outflow conductance, outflow resistance, intracranial pressure, cerebrospinal fluid dynamics
Nationell ämneskategori
Medicinteknik
Forskningsämne
medicinsk informatik
Identifikatorer
urn:nbn:se:umu:diva-1367 (URN)
Disputation
2007-10-12, Betula, 6M, NUS, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2008-09-02 Skapad: 2008-09-02 Senast uppdaterad: 2018-06-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Andersson, NinaMalm, JanBäcklund, TomasEklund, Anders

Sök vidare i DiVA

Av författaren/redaktören
Andersson, NinaMalm, JanBäcklund, TomasEklund, Anders
Av organisationen
RadiofysikNeurologi
I samma tidskrift
Physiological Measurement

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 694 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf