Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans.
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
Show others and affiliations
2006 (English)In: European Respiratory Journal, ISSN 0903-1936, E-ISSN 1399-3003, Vol. 27, no 2, p. 359-365Article in journal (Refereed) Published
Abstract [sv]

Pulmonary cells exposed to diesel exhaust (DE) particles in vitro respond in a hierarchical fashion with protective antioxidant responses predominating at low doses and inflammation and injury only occurring at higher concentrations. In the present study, the authors examined whether similar responses occurred in vivo, specifically whether antioxidants were upregulated following a low-dose DE challenge and investigated how these responses related to the development of airway inflammation at different levels of the respiratory tract where particle dose varies markedly. A total of 15 volunteers were exposed to DE (100 microg x m(-3) airborne particulate matter with a diameter of <10 microm for 2 h) and air in a double-blinded, randomised fashion. At 18 h post-exposure, bronchoscopy was performed with lavage and mucosal biopsies taken to assess airway redox and inflammatory status. Following DE exposure, the current authors observed an increase in bronchial mucosa neutrophil and mast cell numbers, as well as increased neutrophil numbers, interleukin-8 and myeloperoxidase concentrations in bronchial lavage. No inflammatory responses were seen in the alveolar compartment, but both reduced glutathione and urate concentrations were increased following diesel exposure. In conclusion, the lung inflammatory response to diesel exhaust is compartmentalised, related to differing antioxidant responses in the conducting airway and alveolar regions.

Place, publisher, year, edition, pages
2006. Vol. 27, no 2, p. 359-365
Identifiers
URN: urn:nbn:se:umu:diva-16114DOI: 10.1183/09031936.06.00136904PubMedID: 16452593Scopus ID: 2-s2.0-31844442421OAI: oai:DiVA.org:umu-16114DiVA, id: diva2:155787
Available from: 2007-08-17 Created: 2007-08-17 Last updated: 2023-05-09Bibliographically approved
In thesis
1. Airway antioxidant responses to oxidative air pollution and vitamin supplementation
Open this publication in new window or tab >>Airway antioxidant responses to oxidative air pollution and vitamin supplementation
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Air pollutants, such as ozone (O3) and diesel exhaust particles, elicit oxidative stress in the lung. Antioxidants within the respiratory tract lining fluid (RTLF) protect the underlying tissue from oxidative injury. Supplementation with vitamins has been shown to modulate the acute ozone-induced effects, but the mechanisms behind this have not been fully clarified.

The aim of this thesis was to investigate the airway responses to diesel exhaust and ozone exposure in healthy humans, with the emphasis on inflammatory and antioxidant responses. Furthermore, to study whether oral supplementation with vitamin C could increase ascorbate concentration in the RTLF and whether vitamin supplementation could modulate the negative effects induced by ozone exposure. Diesel exhaust (100 µg/m3 PM10 for 2h), evaluated 18 hours post exposure (PE), induced a neutrophilic airway inflammation and an increase in bronchoalveolar (BAL) urate and reduced glutathione. During O3 exposure (0.2 ppm for 2h), significant losses of nasal RTLF urate and ascorbate concentrations were observed. Six hours PE, a neutrophilic inflammation was evident in the bronchial wash (BW), together with enhanced concentrations of urate and total glutathione. In the bronchoalveolar lavage (BAL), where vitamin C, urate and glutathione concentrations were augmented, no inflammatory response was seen. In alveolar lavage leukocytes, there was a significant loss of glutathione and cysteine, whereas an increase in ascorbate was found in bronchial tissue samples.

Following supplementation with increasing doses of vitamin C (60-1,000 mg/day, for 14 days), evaluated 24 hours after the last dose, ascorbate concentrations were unchanged in the nasal RTLF, despite elevated concentrations in plasma and urine. In contrast, following a single dose of 1g of vitamin C, vitamin C concentrations increased significantly in both plasma and nasal lavage two hours post supplementation, before returning to baseline levels at 24 hours. Notably, dehydroascorbate (DHA) accounted for the largest part of RTLF vitamin C and a number of control experiments were performed to ensure the authenticity of this finding. Healthy O3 responders were exposed to O3 (0.2 ppm for 2 h) and air, following seven days of supplementation with vitamin C and E or placebo. No protective effect on lung function or airway inflammation was observed following supplementation. BW and BAL-DHA were enhanced after O3, with further increases following supplementation.

In conclusion, oxidative air pollutants induce airway inflammation, as well as a broad spectrum of antioxidant adaptations, which could ultimately limit the airway inflammatory responses. Oral vitamin supplementation was shown to augment RTLF-vitamin C concentrations, but it did not provide protection from the ozone-induced airway responses following a single insult of ozone. The finding of high concentrations of DHA in the RTLF could indicate that DHA represents an important transport form of vitamin C onto the surface of the lung.

Place, publisher, year, edition, pages
Umeå: Folkhälsa och klinisk medicin, 2006. p. 93
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 1014
Keywords
Medicine, air pollution, ozone, diesel exhaust, airway inflammation, antioxidant, vitamin C, dehydroascorbate, vitamin supplementation, Medicin
Research subject
Lung Medicine
Identifiers
urn:nbn:se:umu:diva-742 (URN)91-7264-040-5 (ISBN)
Public defence
2006-04-21, Sal B, Tandläkarhögskolan, 9 tr, 901 85, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2006-04-03 Created: 2006-04-03 Last updated: 2009-09-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Behndig, AnnelieStenfors, NikolaiHelleday, RagnberthSandström, ThomasBlomberg, Anders

Search in DiVA

By author/editor
Behndig, AnnelieStenfors, NikolaiHelleday, RagnberthSandström, ThomasBlomberg, Anders
By organisation
Pulmonary MedicineEnergy Technology and Thermal Process Chemistry
In the same journal
European Respiratory Journal

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 826 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf