umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Proposed minimum reporting standards for data analysis in metabolomics
Vise andre og tillknytning
2007 (engelsk)Inngår i: Metabolomics, Vol. 3, s. 231-41Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The goal of this group is to define the reporting requirements associated with the statistical analysis (including univariate, multivariate, informatics, machine learning etc.) of metabolite data with respect to other measured/collected experimental data (often called metadata). These definitions will embrace as many aspects of a complete metabolomics study as possible at this time. In chronological order this will include: Experimental Design, both in terms of sample collection/matching, and data acquisition scheduling of samples through whichever spectroscopic technology used; Deconvolution (if required); Pre-processing, for example, data cleaning, outlier detection, row/column scaling, or other transformations; Definition and parameterization of subsequent visualizations and Statistical/Machine learning Methods applied to the dataset; If required, a clear definition of the Model Validation Scheme used (including how data are split into training/validation/test sets); Formal indication on whether the data analysis has been Independently Tested (either by experimental reproduction, or blind hold out test set). Finally, data interpretation and the visual representations and hypotheses obtained from the data analyses.

sted, utgiver, år, opplag, sider
2007. Vol. 3, s. 231-41
Emneord [en]
Chemometrics, Multivariate, Megavariate, Unsupervised learning, Supervised learning, Informatics, Bioinformatics, Statistics, Biostatistics, Machine learning, Statistical learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-16435DOI: doi:10.1007/s11306-007-0081-3OAI: oai:DiVA.org:umu-16435DiVA, id: diva2:156108
Tilgjengelig fra: 2007-09-27 Laget: 2007-09-27 Sist oppdatert: 2018-06-09

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Sjöström, MichaelTrygg, Johan

Søk i DiVA

Av forfatter/redaktør
Sjöström, MichaelTrygg, Johan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 133 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf