Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Broad-Spectrum Antidote Discovery by Untangling the Reactivation Mechanism of Nerve-Agent-Inhibited Acetylcholinesterase
Umeå University, Faculty of Science and Technology, Department of Chemistry.
CBRN Defense and Security, Swedish Defense Research Agency, Umeå, Sweden.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
CBRN Defense and Security, Swedish Defense Research Agency, Umeå, Sweden.
Show others and affiliations
2022 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 28, no 40, article id e202200678Article in journal (Refereed) Published
Abstract [en]

Reactivators are vital for the treatment of organophosphorus nerve agent (OPNA) intoxication but new alternatives are needed due to their limited clinical applicability. The toxicity of OPNAs stems from covalent inhibition of the essential enzyme acetylcholinesterase (AChE), which reactivators relieve via a chemical reaction with the inactivated enzyme. Here, we present new strategies and tools for developing reactivators. We discover suitable inhibitor scaffolds by using an activity-independent competition assay to study non-covalent interactions with OPNA-AChEs and transform these inhibitors into broad-spectrum reactivators. Moreover, we identify determinants of reactivation efficiency by analysing reactivation and pre-reactivation kinetics together with structural data. Our results show that new OPNA reactivators can be discovered rationally by exploiting detailed knowledge of the reactivation mechanism of OPNA-inhibited AChE.

Place, publisher, year, edition, pages
John Wiley & Sons, 2022. Vol. 28, no 40, article id e202200678
Keywords [en]
drug design, kinetics, nerve agent antidotes, reaction mechanisms, structural biology
National Category
Pharmacology and Toxicology
Identifiers
URN: urn:nbn:se:umu:diva-196525DOI: 10.1002/chem.202200678ISI: 000807066300001PubMedID: 35420233Scopus ID: 2-s2.0-85131325691OAI: oai:DiVA.org:umu-196525DiVA, id: diva2:1669400
Funder
Swedish Research Council, 2018-07152Swedish Research Council Formas, 2019-02496Swedish Research Council, 2018-05176Available from: 2022-06-14 Created: 2022-06-14 Last updated: 2025-05-19Bibliographically approved
In thesis
1. Chemistry for a safer world: towards a better understanding of bioactive compounds against nerve agent intoxication through chemical and computational tools
Open this publication in new window or tab >>Chemistry for a safer world: towards a better understanding of bioactive compounds against nerve agent intoxication through chemical and computational tools
2025 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The use of prohibited chemical weapons, particularly the so-called nerve agents, is still a horrifying reality. Chemical weapons have still been used in many parts of the world in recent years, revealing the shortcomings of available drug treatments for the exposure to nerve agents.

Nerve agents inhibit the enzyme acetylcholinesterase (AChE), a key player in neuronal signalling. Since the discovery of antidotes, so-called reactivators like HI-6 and symptomatic drugs like atropine, the development of new bioactive molecules against nerve agent intoxication has been slow due to a lack of understanding of the molecular properties that guide their efficacy. This thesis aims to better understand the mechanisms that guide the efficacy of both reactivators and symptomatic drugs against nerve agent intoxication.

The complexity of the inhibited AChE system, which consists of the enzyme, a nerve agent, and the bioactive reactivator, has hindered the systematic investigation of reactivators. We therefore do not only aim to develop new reactivators, but primarily understand which molecular properties determine reactivation efficacy. We focus on establishing ligands that bind to AChE independently of an inhibited nerve agent and transform one such ligand into a reactivator. A library of analogue reactivators systematically investigates both the reactive oxime functionality and the ligand moiety that binds at the entrance of AChE’s active site with a focus on their structure-activity relationships. We showed that even minor structural changes can have a large impact on the activity of reactivators against various nerve agents.

In the area of symptomatic drugs, we identified the enzyme choline acetyltransferase (ChAT) as an interesting drug target. A long-established class of inhibitors of ChAT showed a confusing structure-activity relationship. We found that their inhibition properties could be explained by a chemical reaction inside ChAT (in situ) with a cofactor to build the actual inhibiting molecule. This understanding is now paving the way for a new generation of ChAT inhibitors.

In conclusion, this thesis aims to aid the understanding of AChE reactivators and ChAT inhibitors to help eliminate the threat of nerve agents to human lives. This work also highlights the importance of understanding interaction mechanisms between bioactive molecules and their biological targets to facilitate the discovery of new drugs and drug targets.

Abstract [sv]

Förbjudna kemiska vapen, särskilt så-kallade nervgaser, används fortfarande till fruktansvärda konsekvenser. Konflikter över världen har visat att hotet från kemiska vapen är aktuellt och kräver nya, förbättrade botemedel.

Nervgaserna inhiberar enzymet acetylkolinesteras (AChE) som är ytterst viktigt för signalflödet i våra neuroner. Även fast det finns botemedel i dag, så kallade reaktivatorer som HI6 såsom symptomatiska läkemedel som atropin, har utvecklingen i fältet gått långsamt. Det största problemet är en saknande förståelse av de molekylära egenskaperna som styr botemedlens effektivitet mot nervgasförgiftning. Denna avhandling syftar åt en bättre kunskap kring molekylära mekanismer som påverkar effektiviteten av nya botemedel och symptomatiska läkemedel mot nervgasförgiftning.

Det inhiberade AChE systemet som består av AChE, nervgas och reaktivator, är ytterst komplex och har försvårat utvecklingen av nya antidoter. Därför utvecklar vi inte endast nya reaktivatorer, utan syftar åt en bättre kunskap kring molekylära egenskaper som styr botemedlets effektivitet. Vi hittade nya ligander som binder till AChE oberoende av en nervgas och modifierade en sådan ligand till en reaktivator. Vi har sedan designat ett bibliotek av olika reaktivatorer som systematiskt undersöker reaktivatorens oximgrupp och liganddelen som bindar till ingången av AChEs aktiva ficka. Här fokuserade vi på molekylernas strukturaktivitetssamband. Vi visade att även små strukturella förändringar i molekylen medför stora förändringar i reaktivatorens effektivitet mot olika nervgaser.

När det gäller symptomatiska läkemdel mot nervgasförgiftning verkade vi för att identifiera enzymet kolinacetyltransferas (ChAT) som ett lämpligt målprotein. Det har funnits en rad hämmare för ChAT, dock har deras strukturaktivitetssamband varit oklart. Det visade sig att hämmarnas inhiberingsförmågan kan förklaras genom en kemisk reaktion med en kofaktor som sker inuti ChAT (in situ) och som bildar den faktiska aktiva hämmaren. Denna upptäckt visar nu vägen åt en ny generation av nya, förbättrade ChAT hämmare.

Denna avhandling verkar för en djupare kunskap kring AChE reaktivatorer och ChAT hämmare så att hotet från kemiska vapen försvinner i framtiden. Dessutom ska avhandlingen belysa förståelsen av molekylära mekanismer för utvecklingen av bioaktiva molekyler för att kunna underlätta upptäckten av nya läkemedel och målprotein

Place, publisher, year, edition, pages
Umeå University, 2025. p. 54
National Category
Organic Chemistry
Identifiers
urn:nbn:se:umu:diva-238998 (URN)978-91-8070-693-3 (ISBN)978-91-8070-692-6 (ISBN)
Presentation
2025-06-05, Triple Helix, Universitetstorget 4, 90187 Umeå, 09:00 (English)
Supervisors
Available from: 2025-05-19 Created: 2025-05-19 Last updated: 2025-05-19Bibliographically approved

Open Access in DiVA

fulltext(2384 kB)192 downloads
File information
File name FULLTEXT01.pdfFile size 2384 kBChecksum SHA-512
87b00c4a3e3e1de0d59f21ca8ad7be6a8609edbb19c16fc928d7c2ce42b447c6bcfa03695f0db8ddfdefb1ab6d818e8171680d05759025d009645e2c3c8abc0b
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Lindgren, CeciliaHoster, NormanLinusson, Anna

Search in DiVA

By author/editor
Lindgren, CeciliaHoster, NormanLinusson, Anna
By organisation
Department of Chemistry
In the same journal
Chemistry - A European Journal
Pharmacology and Toxicology

Search outside of DiVA

GoogleGoogle Scholar
Total: 192 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 846 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf