For the first time, a tandem catalytic material namely 5 wt. % Pd/NbOPO 4 was utilized in the depolymerization of wood in supercritical-ethanol under low initial-hydrogen pressure. The experiments were conducted under various experimental conditions, wood fractionation was executed with fresh, and acetone extracted birch. A comprehensive analysis was performed to elucidate the dissolution efficiency and achieved product distribution. The results indicated fresh birch, 34 wt. % of lignin monomer yield with 84 wt. % delignification efficiency were obtained while extracted wood, 35 wt. % of lignin monomer yield with 78 wt. % delignification efficiency was achieved. The total lignin monomer content extracted from the fresh birch is composed of 76.9 wt. % of dimethoxyphenols and 16.5 wt. % of monomers with the guaiacol structure. Among the dimethoxyphenols, major homosyringaldehyde (61.9 wt. %). Where extracted wood, 93.2 wt. % of dimethoxyphenols (63.6 wt. % homosyringaldehyde) and guaiacol-monomers (6.8 wt. %). It was concluded that the depolymerization occurred via breaking of the ether bonds in lignin, including ether hydrolysis by Lewis acid sites over the solid acid catalyst and with subsequent deoxygenation of monophenols over Pd. In addition, an extraction process was proposed to extract the aromatic fraction from the obtained biocrude.