Background: Psychophysiological consequences often persist following musculoskeletal trauma and can result in vastly decreased quality of life. Re-injury anxiety is particularly common among individuals following anterior cruciate ligament (ACL) injury. Existing assessments of re-injury anxiety are, however, restricted to subjective suboptimal questionnaires, which may result in under-reporting and thus poorer injury management. We propose a novel approach to objectively quantify arousal response to movement-related anxiety. A new experimental paradigm was implemented to induce and record a conditioned electrophysiological response to a sudden perturbation, experienced to be potentially injurious.
Objective: To explore the feasibility of detecting anxiety-associated electrocortical response and to evaluate its discriminative ability between asymptomatic individuals and those who had experienced an ACL injury.
Methods: Physically-active asymptomatic persons and individuals post-ACL reconstruction stood blindfolded on a perturbation platform capable of generating high-acceleration translations (1.5 m/s2). Auditory stimuli were repeatedly presented in four-second intervals, as either low- or high-frequency tones. Half of the high-frequency tones were followed 1.5 seconds later by a destabilizing perturbation in one of eight randomized directions. The two tone conditions were thus termed ‘Neutral’ and ‘Anxiety’, as the high-frequency tone was intended to invoke an arousal response in anticipation of a potential perturbation. Event-related potentials (ERP) were computed for nine electrodes by averaging 100 Neutral and 100 Anxiety trials. Significant ERP components were identified using functional data analysis. Paired difference-waves’ amplitudes (Neutral - Anxiety) were compared between groups.
Results: ERP correlates of anxiety were detected for both groups in frontal and central midline locations, with an observable contingent negative variation (CNV) from 500 ms post-stimulus in Anxiety compared with Neutral trials. This ERP component is reflective of a threat-induced arousal response, associated with attention and expectancy of an anxiety-relevant event. Preliminary data indicate no group differences in CNV amplitudes.
Conclusions: Objective evaluation of an arousal response to movement-related anxiety was found to be feasible, resulting in a threat-induced CNV. Further investigation will elucidate the discriminative power of such an approach to differentiate between individuals with high and low re-injury anxiety, as well as potential associations with existing patient-reported outcome measures.
2022. article id 84186
Society for Neuroscience 2022 Meeting, San Diego, Carliforna, USA, November 12-16, 2022