Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Managing acoustic noise within MRI: a qualitative interview study among Swedish radiographers
Umeå University, Faculty of Medicine, Department of Nursing. Umeå University, Faculty of Medicine, Department of Diagnostics and Intervention. Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.ORCID iD: 0000-0002-7480-770x
Umeå University, Faculty of Medicine, Department of Diagnostics and Intervention. Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden.
Umeå University, Faculty of Medicine, Department of Nursing.ORCID iD: 0000-0003-4456-7853
Show others and affiliations
2024 (English)In: Radiography, ISSN 1078-8174, E-ISSN 1532-2831, Vol. 30, no 3, p. 889-895Article in journal (Refereed) Published
Abstract [en]

Introduction: Acoustic noise from magnetic resonance imaging (MRI) can cause hearing loss and needs to be mitigated to ensure the safety of patients and personnel. Capturing MR personnel's insights is crucial for guiding the development and future applications of noise-reduction technology. This study aimed to explore how MR radiographers manage acoustic noise in clinical MR settings.

Methods: Using a qualitative design, we conducted semi-structured individual interviews with fifteen MR radiographers from fifteen hospitals around Sweden. We focused on the clinical implications of participants’ noise management, using an interpretive description approach. We also identified sociotechnical interactions between People, Environment, Tools, and Tasks (PETT) by adopting a Human Factors/Ergonomics framework. Interview data were analyzed inductively with thematic analysis (Braun and Clarke).

Results: The analysis generated three main themes regarding MR radiographers’ noise management: (I) Navigating Occupational Noise: Risk Management and Adaptation; (II) Protecting the Patient and Serving the Exam, and (III) Establishing a Safe Healthcare Environment with Organizational Support.

Conclusion: This study offers insights into radiographers’ experiences of managing acoustic noise within MRI, and the associated challenges. Radiographers have adopted multiple strategies to protect patients and themselves from adverse noise-related effects. However, they require tools and support to manage this effectively, suggesting a need for organizations to adopt more proactive, holistic approaches to safety initiatives.

Implications for practice: The radiographers stressed the importance of a soundproofed work environment to minimize occupational adverse health effects and preserve work performance. They acknowledge noise as a common contributor to patient distress and discomfort. Providing options like earplugs, headphones, mold putty, software-optimized “quiet” sequences, and patient information were important tools. Fostering a safety culture requires proactive safety efforts and support from colleagues and management.

Place, publisher, year, edition, pages
Elsevier, 2024. Vol. 30, no 3, p. 889-895
Keywords [en]
Acoustic noise, Human factors, MRI safety, Occupational health, Patient safety, Thematic analysis
National Category
Nursing Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:umu:diva-223498DOI: 10.1016/j.radi.2024.04.002ISI: 001228761800001Scopus ID: 2-s2.0-85189915794OAI: oai:DiVA.org:umu-223498DiVA, id: diva2:1854318
Available from: 2024-04-25 Created: 2024-04-25 Last updated: 2025-04-24Bibliographically approved
In thesis
1. Safe and sound: managing acoustic noise, gradient field applications, and static magnetic field exposure in MR – a radiography perspective
Open this publication in new window or tab >>Safe and sound: managing acoustic noise, gradient field applications, and static magnetic field exposure in MR – a radiography perspective
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Tystnad, tagning : att handskas med buller, växlande gradientfält och exponering av statiska magnetfält vid MR
Abstract [en]

Background: During magnetic resonance imaging (MRI), the interaction between the alternating currents of the gradient coil and the static magnetic field (SMF) generates vibrational forces, perceived as loud acoustic noise. The sound pressure levels (SPLs) are high enough to cause hearing damage, necessitating hearing protection for anyone in the scanner room. To address this, technological advancements have introduced acoustic noise reduction (ANR) software that can alter the gradient currents, resulting in lower vibrational forces and quieter scans. However, such alterations might decrease image quality and prolong scan times. Therefore, it is crucial to evaluate different ANR software to understand their specific utilities and limitations. Additionally, it remains unclear whether, when, and how such software is being utilized clinically, and how MR personnel manage acoustic noise overall. Furthermore, exposure to the SMF within the scanner vicinity can induce transient adverse health effects, such as vertigo, dizziness, nausea, headaches, drowsiness, and metallic taste. However, the evidence is inconclusive regarding the regularity of symptoms, and control groups are needed to account for environmental confounders. Insights into the management of acoustic noise, gradient field applications, and SMF exposure may assist in making MRI both safer and quieter, thereby improving the MR work environment, patient comfort, and the overall clinical experience.

Aim: The overall aim of this thesis was to present a radiography perspective on acoustic noise management, gradient field applications and SMF exposure in MR.

Methods: This thesis encompasses four studies. In Study I, we explored health complaints subjectively associated with SMF and acoustic noise exposure, including symptom prevalence and attribution over the last year. Data were extracted from a nationally distributed cross-sectional survey answered by MR radiographers and CT radiographers (the latter used as controls; CT, computed tomography) across Sweden. In total, data from 529 participants were included and analyzed both descriptively and analytically using logistic regression. In Study II, we conducted 15 individual semi-structured interviews with MR radiographers across Sweden, to explore how they manage acoustic noise in clinical MR settings. The interviews were analyzed thematically. Studies III and IV were both experimental studies that compared ANR software to conventional (non-ANR) imaging. Study III evaluated T2-weighted turbo spin echo (T2W TSE) during lumbar MRI at 1.5 Tesla (T) using two different ANR software – Whisper Mode (WM) and Quiet Suite (QS). In Study IV, we evaluated T2W fast spin echo (FSE) and three-dimensional T1-weighted turbo field echo (3D T1W TFE) during brain MRI at 7 T using the ANR software SofTone. In both Studies III and IV, peak SPLs, perceived noise levels, image quality, and inter-observer agreements between radiologists were compared. In Study III we also measured switched gradient field exposure and gradient currents. Study III included 40 patients, and Study IV 28 healthy volunteers. Data were analyzed using repeated measures analysis of variance (ANOVA), Friedman’s ANOVA, and Wilcoxon’s signed-rank test in Study III. In Study IV, we used paired t-test and Wilcoxon’s signed-rank test. Inter-observer agreement between radiologists’ assessments of image quality was reported in percentage agreement for both studies, with Krippendorff’s alpha also calculated in Study IV.

Results: In Study I, no significant differences in symptom prevalence were seen between the radiographers who work in MR and those in CT. However, working at ≥3 T doubled the risk of SMF-associated symptoms as compared to working at ≤1.5 T. Stress was a significant confounder of symptoms. Work-related acoustic noise was rated as more troublesome by CT than MR radiographers. Study II yielded three main themes on how MR radiographers manage acoustic noise: (I) Navigating Occupational Noise: Risk Management and Adaptation; (II) Protecting the Patient and Serving the Exam, and (III) Establishing a Safe Healthcare Environment with Organizational Support. Compared to conventional imaging, software-based ANR reduced the peak SPLs by 72% and 84% with WM and QS, respectively (Study III), and by 89% (T2W FSE) and 92% (3D T1W TFE) using SofTone (Study IV). In both Studies III and IV, all ANR sequences were perceived as being significantly quieter than their conventional counterparts. Furthermore, all sequences remained diagnostic, although qualitative assessment scores differed slightly for 3D T1W TFE. Switched gradient field exposure was reduced by 48% and 66% using WM and QS, respectively. 

Conclusion: No significant differences in symptom prevalence were seen between MR and CT radiographers. However, working at 3 T increased the risk of SMF symptoms, and stress increased adverse health effects. Although noise was considered to be more troublesome by CT radiographers, this does not suggest that acoustic noise is not problematic in MR environments. MR radiographers demonstrate a willingness to adapt and employ measures to mitigate acoustic noise, thereby enhancing safety and comfort for both patients and personnel, all while striving to deliver diagnostic exams. However, they require appropriate tools and support to do so, suggesting that organizations need to adopt more proactive, holistic approaches to safety initiatives. This thesis also evaluated software-based ANR for its functionality in clinical practice, and found that T2W TSE/FSE and 3D T1W TFE can maintain acceptable subjective image quality while considerably decreasing peak SPLs. This reduction in sound intensity provides both a safer, quieter, and (presumably) more comfortable scan environment.

Abstract [sv]

Bakgrund: Vid magnetkameraundersökningar (MR, magnetisk resonans) skapar samspelet mellan växelströmmarna i gradientspolen och det statiska magnetfältet (SMF) vibrationskrafter som uppfattas som höga oljud. Ljudnivåerna är så pass höga att hörselskydd krävs för att undvika hörselskador under bildtagning. Modern mjukvara har utvecklats för att minska detta buller genom att ändra eller begränsa gradientströmmarna, men kan påverka bildkvaliteten negativt och förlänga scanningstiden. Genom att utvärdera olika bullerreducerande mjukvaror kan vi förstå deras specifika användningsområden och begränsningar. Dessutom är det oklart om, när och hur sådan mjukvara används kliniskt, eller hur MR-personal hanterar buller generellt. Exponering för SMF i närheten av magnetkameran kan även orsaka tillfälliga negativa hälsoeffekter som yrsel, illamående, huvudvärk, dåsighet och metallsmak. Hur ofta dessa symtom uppträder är inte helt klarlagt, och kontrollgrupper behövs för att ta hänsyn till påverkande omgivningsfaktorer. Ökad kunskap om hanteringen av buller, gradientfältsapplikationer och SMF-exponering kan bidra till att göra MR både säkrare och tystare, vilket förbättrar arbetsmiljön, patientkomforten och den övergripande kliniska upplevelsen.

Syfte: Det övergripande syftet med denna avhandling var att presentera ett radiografiskt perspektiv på hantering av buller, gradientfältsapplikationer och SMF-exponering vid MR.

Metod: Denna avhandling omfattar fyra studier. I Studie I undersökte vi förekomst av symtom och hälsobesvär som kopplats till SMF- och bullerexponering. Data hämtades från en nationellt utskickad tvärsnittsenkät besvarad av MR-röntgensjuksköterskor och CT-röntgensjuksköterskor (CT, datortomografi, användes som kontroller) runtom hela Sverige. Totalt inkluderades data från 529 deltagare och analyserades både beskrivande och med logistisk regression. I Studie II intervjuade vi 15 MR-röntgensjuksköterskor runtom Sverige för att undersöka hur de hanterar buller i kliniska MR-miljöer. Data analyserades med tematisk analys. Studie III och IV var båda experimentella och jämförde bildtagning med bullerreducerande mjukvara med konventionell (icke-bullerreducerande) MR-bildtagning. Studie III utvärderade två olika mjukvaror – Whisper Mode och Quiet Suite – under MR-ländrygg vid 1,5 Tesla (T). Studien inkluderade 40 patienter. I Studie IV utvärderades mjukvaran SofTone på två olika bildtagningssekvenser av MR-hjärna vid 7 T, och inkluderade 28 friska frivilliga. I både Studie III och IV jämfördes ljudtrycksnivåer, upplevda bullernivåer, bildkvalitet samt överensstämmelse mellan bedömningar från röntgenläkare. I Studie III mätte vi också exponeringsnivåer från växlande gradientfält samt gradientströmmar. 

Resultat: I Studie I sågs inga signifikanta skillnader i symtomförekomst mellan de röntgensjuksköterskor som arbetar inom MR och de inom CT, men stress var en tydligt påverkande faktor. Däremot dubblerades risken för SMF-symtom (yrsel, illamående, metallsmak, rörelseillusioner) vid arbete vid ≥3 T jämfört med arbete vid ≤1,5 T. Arbetsrelaterat buller skattades som mer besvärande av CT-röntgensjuksköterskor än av de vid MR. Studie II resulterade i tre huvudteman kring röntgensjuksköterskors hantering av buller i klinisk MR: (I) Navigera yrkesmässigt buller: riskhantering och anpassning; (II) Skydda patienten och genomföra undersökningen, och (III) Etablera en säker vårdmiljö med organisatoriskt stöd. Jämfört med konventionell MR-bildtagning minskade bullerreducerande mjukvaror ljudtrycksnivåerna med 72% (Whisper Mode) och 84% (Quiet Suite) i Studie III, och med 89–92% med SofTone i Studie IV. I både Studie III och IV upplevdes alla bullerreducerande sekvenser som betydligt tystare än deras konventionella motsvarigheter. Dessutom förblev alla bilder diagnostiska enligt röntgenläkarnas bedömningar. Exponeringen av växlande gradientfält minskade med 48% och 66% med Whisper Mode respektive Quiet Suite.

Slutsats: Inga signifikanta skillnader i symtomförekomst sågs mellan MR- och CT-röntgensjuksköterskor. Däremot ökade arbete vid 3 T risken för SMF-symtom, och stress ökade negativa hälsoeffekter. Även om buller ansågs vara mer besvärande av CT-personal, innebär detta inte att buller inte är problematiskt vid MR. MR-röntgensjuksköterskor visar en vilja att anpassa sig och vidta åtgärder för att minska buller, vilket ökar säkerheten och komforten för både patienter och personal, samtidigt som de strävar efter att leverera diagnostiska undersökningar. De behöver dock lämpliga verktyg och stöd för att göra detta, vilket tyder på att arbetsplatser med MR-enheter behöver anta mer proaktiva, helhetsbaserade tillvägagångssätt för säkerhetsinitiativ. Denna avhandling utvärderade också bullerreducerande mjukvaror för deras funktionalitet i klinisk praxis och fann att bildkvaliteten kan bibehållas diagnostiskt acceptabel samtidigt som bullernivåerna minskas avsevärt. 

Place, publisher, year, edition, pages
Umeå: Umeå University, 2024. p. 91
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 2317
Keywords
magnetic resonance, MR safety, patient safety, occupational health, acoustic noise reduction, gradient field, static magnetic field, symptom, radiography, human factors, ergonomics, magnetkamera, MRT, MR-säkerhet, patientsäkerhet, arbetsmiljöhälsa, buller, bullerreduktion, gradientfält, statiska magnetfält, symtom, radiografi, ergonomi, human factors
National Category
Other Medical Sciences not elsewhere specified
Research subject
Radiography
Identifiers
urn:nbn:se:umu:diva-228970 (URN)978-91-8070-457-1 (ISBN)978-91-8070-458-8 (ISBN)
Public defence
2024-09-27, Aula Biologica, Biologihuset, Umeå Universitet, Linnaeus väg 7, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2024-09-06 Created: 2024-08-30 Last updated: 2024-09-06Bibliographically approved

Open Access in DiVA

fulltext(518 kB)170 downloads
File information
File name FULLTEXT01.pdfFile size 518 kBChecksum SHA-512
badb3c3098d19583fb53c1fed2e46ffbb4d1c6da3fee95f8eec43efabe06ad9bd8ff04c0ce3c9589a6412b588722d611af753233d2f66362cd27aa763028370f
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Glans, AntonWilén, JonnaAudulv, ÅsaLindgren, Lenita

Search in DiVA

By author/editor
Glans, AntonWilén, JonnaAudulv, ÅsaLindgren, Lenita
By organisation
Department of NursingDepartment of Diagnostics and InterventionRadiation Physics
In the same journal
Radiography
NursingRadiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar
Total: 187 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 493 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf