Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Differentiating pili expressed by enterotoxigenic and uropathogenic escherichia coli with optical tweezers
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. (Optical Tweezers Center)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. (Optical Tweezers Center)
Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston MA, USA.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. (Optical Tweezers Center)
Vise andre og tillknytning
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

Enterotoxigenic Escherichia coli (ETEC) attach to the host epithelium in the intestinal tract via specific adhesion organelles expressed on the cell membrane. We investigate, by force measuring optical tweezers, the intrinsic biomechanical properties and kinetics of the colonization factor I (CFA/I) at a single pilus level. The measurements indicate that CFA/I pili are helix-like structures that can both be unraveled to a linearized polymer by applying a small external force, 7.5 ± 1.5 pN but also regain its helix-like structure when the applied force is reduced. The data confirm that layer-to-layer interactions, that stabilize the helix-like structure, are much weaker than the interactions found in pili expressed by Uropathogenic Escherichia coli (UPEC). It is also found, contrary to previous results assessed from UPEC pili, that the CFA/I undergo in some cases a sudden structural change, a force drop of ~2 pN, when unraveled from the helix-like configuration to an open helical linearized fiber. These data suggest a rotation of the filament about its helical axis, followed by a region in which the force required to extend the pili further increases rapidly. During this final elongation to a super-extended fiber, CFA/I pili do not show any structural transition as seen for UPEC pili. In addition, the CFA/I pili show faster kinetics than UPEC pili that allows for a larger dynamic regime of in vivo shear forces. The unfolding and refolding possibility points toward an organelle that has evolved to allow for dynamic damping of external forces and handling of harsh motion without breaking.

HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-21492OAI: oai:DiVA.org:umu-21492DiVA, id: diva2:211340
Tilgjengelig fra: 2009-04-14 Laget: 2009-04-14 Sist oppdatert: 2018-06-09bibliografisk kontrollert
Inngår i avhandling
1. A study of bacterial adhesion on a single-cell level by means of force measuring optical tweezers and simulations
Åpne denne publikasjonen i ny fane eller vindu >>A study of bacterial adhesion on a single-cell level by means of force measuring optical tweezers and simulations
2009 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The intriguing world of microbiology is nowadays accessible for detailed exploration at a single–molecular level. Optical tweezers are a novel instrument that allows for non–invasive manipulation of single cells by the sole use of laser light and operates on the nano– and micrometer scale which corresponds to the same length scale as living cells. Moreover, forces within the field of microbiology are typically in the picoNewton range which is in accordance with the capability of force measuring optical tweezers systems. Both these conformabilities imply that force measuring optical tweezers is suitable for studies of single living cells. This thesis focuses on the mechanisms of bacterial attachments to host cells which constitute the first step in bacterial infection processes. Bacteria bind specifically to host receptors by means of adhesins that are expressed either directly on the bacterial membrane or on micrometer–long adhesion organelles that are called pili. The properties of single adhesin–receptor bonds that mediate adherence of the bacterium Helicobacter pylori are first examined at various acidities. Further on, biomechanical properties of P pili expressed by Escherichia coli are presented to which computer simulations, that capture the complex kinetics of the pili structure and precisely replicate measured data, are applied. Simulations are found to be a powerful tool for investigations of adhesive attributes of binding systems and are utilized in the analyses of the specific binding properties of P pili on a single–pilus level. However, bacterial binding systems generally involve a multitude of adhesin–receptor bonds. To explore bacterial attachments, the knowledge from single–pilus studies is brought into a full multipili attachment scenario which is analyzed by means of theoretical treatments and simulations. The results are remarkable in several aspects. Not only is it found that the intrinsic properties of P pili are composed in an optimal combination to promote strong multipili bindings. The properties of the pili structure itself are also found to be optimized with respect to its in vivo environment. Indeed, the true meaning of the attributes derived at a single–pilus level cannot be unraveled until a multipili–binding system is considered. Whereas detailed studies are presented for the helix–like P pili expressed by Gram–negative Escherichia coli, conceptual studies are presented for the open coil–like T4 pili expressed by Gram–positive Streptococcus pneumoniae. The structural and adhesive properties of these two types of pili differ considerably. These dissimilarities have far–reaching consequences on the adhesion possibilities at both single–pilus and multipili levels which are discussed qualitatively. Moreover, error analyses of conventional data processing methods in dynamic force spectroscopy as well as development of novel analysis methods are presented. These findings provide better understanding of how to perform refined force measurements on single adhesion organelles as well as how to improve the analyses of measurement data to obtain accurate parameter values of biomechanical entities. In conclusion, this thesis comprises a study of bacterial adhesion organelles and the way they cooperate to establish efficient attachment systems that can successfully withstand strong external forces that acts upon bacteria. Such systems can resist, for instance, rinsing effects and thereby allow bacteria to colonize their host. By understanding the complexity, and thereby possible weaknesses, of bacterial attachments, new targets for combating bacterial infections can be identified.

sted, utgiver, år, opplag, sider
Umeå: Print & Media, 2009. s. 108
HSV kategori
Forskningsprogram
fysik; cellforskning; molekylär cellbiologi
Identifikatorer
urn:nbn:se:umu:diva-21493 (URN)978-91-7264-765-7 (ISBN)
Disputas
2009-05-08, N420, Naturvetarhuset, Umeå Universitet, Umeå, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2009-04-17 Laget: 2009-04-14 Sist oppdatert: 2018-06-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Andersson, MagnusBjörnham, OscarUhlin, Bernt Eric

Søk i DiVA

Av forfatter/redaktør
Andersson, MagnusBjörnham, OscarUhlin, Bernt Eric
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 666 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf