umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Blocked Algorithms and Software for Reduction of a Regular Matrix Pair to Generalized Schur Form
Umeå universitet, Teknisk-naturvetenskaplig fakultet, Institutionen för datavetenskap. Umeå universitet, Teknisk-naturvetenskaplig fakultet, HPC2N (Högpresterande beräkningscentrum norr).
Umeå universitet, Teknisk-naturvetenskaplig fakultet, Institutionen för datavetenskap. Umeå universitet, Teknisk-naturvetenskaplig fakultet, HPC2N (Högpresterande beräkningscentrum norr).
1999 (Engelska)Ingår i: ACM Transactions on Mathematical Software, Vol. 25, nr 4, s. 425-454Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A two-stage blocked algorithm for reduction of a regular matrix pair (A, B) to upper Hessenberg-triangular form is presented. In stage 1 (A, B) is reduced to block upper Hessenberg-triangular form using mainly level 3 (matrix-matrix) operations that permit data reuse in the higher levels of a memory hierarchy. In the second stage all but one of the r subdiagonals of the block Hessenberg A-part are set to zero using Givens rotations. The algorithm proceeds in a sequence of supersweeps, each reducing m columns. The updates with respect to row and column rotations are organized to reference consecutive columns of A and B. To further improve the data locality, all rotations produced in a supersweep are stored to enable a left-looking reference pattern, i.e., all updates are delayed until they are required for the continuation of the supersweep. Moreover, we present a blocked variant of the single diagonal double-shift QZ method for computing the generalized Schur form of(A, B) in upper Hessenberg-triangular form. The blocking for improved data locality is done similarly, now by restructuring the reference pattern of the updates associated with the bulge chasing in the QZ iteration. Timing results show that our new blocked variants outperform the current LAPACK routines, including drivers for the generalized eigenvalue problem, by a factor 2-5 for sufficiently large problems.

Ort, förlag, år, upplaga, sidor
1999. Vol. 25, nr 4, s. 425-454
Identifikatorer
URN: urn:nbn:se:umu:diva-21887ISBN: 0098-3500 (tryckt)OAI: oai:DiVA.org:umu-21887DiVA, id: diva2:212157
Tillgänglig från: 2009-04-21 Skapad: 2009-04-21 Senast uppdaterad: 2018-06-08

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

<Go to ISI>://000086588500003

Personposter BETA

Kågström, Bo

Sök vidare i DiVA

Av författaren/redaktören
Kågström, Bo
Av organisationen
Institutionen för datavetenskapHPC2N (Högpresterande beräkningscentrum norr)

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 303 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf