Open this publication in new window or tab >>2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
To study the functions of glycoconjugates in biological systems reliable and efficient protocols for glycoconjugate synthesis are needed. To reach this goal we have developed methods for solid-phase synthesis of glycoconjugates that can be monitored with gel-phase 19F spectroscopy using fluorinated linkers, building blocks, and protecting groups. We have developed a new fluorine containing linker suitable for solid-phase synthesis of glycoconjugates. The linker was more acid-labile than similar linkers in order to enable cleavage under mild conditions of the target compound from the linker resin. A carbamate-based strategy has been applied to attach a spacer carrying an amino group to a fluorinated Wang linker for synthesis of amino-functionalized glycoconjugates using thioglycoside donors with fluorinated protective groups. Cleavage from the solid support was performed with trifluoroacetic acid and subsequent protecting group removal gave the target compound. The terminal amine was conjugated with didecyl squarate and this derivative can be attached to various proteins and solid surfaces carrying primary or secondary amines. To evaluate this methodology we have immobilized glycoconjugates in amino-functionalized microtiter plates and successfully probed them with lectin. In addition, a novel fluorine containing protecting group has been designed, synthesized and evaluated. The protecting group was used for protection of the unreactive 4-OH in a galactose building block that was applied in the synthesis of 6-aminohexyl galabioside and was removed with TBAF in THF.
Adenovirus serotype 8 (Ad8), Ad19, and Ad37 cause the severe ocular infection, epidemic keratoconjunctivities (EKC). During infection, the adenoviruses interact with sialic acid containing glycoconjugates on the epithelial cells via fiber structures extending from the viral particles. The virus particle most likely binds to the host cell in a multivalent way by simultaneously using multiple fiber proteins and binding sites. Multivalent sialic acid containing conjugates could efficiently inhibit Ad37 cell attachment and subsequent infection of human corneal epithelial (HCE) cells. Three compact tri- and tetravalent sialic acid conjugates were prepared and evaluated as inhibitors of adenoviral host cell attachment and subsequent infection and all conjugates were potent as anti-adenoviral agents. The conjugates can readily be synthesized from accessible starting materials. A crystal structure of the Ad37 fiber knob protein and the trivalent sialic acid conjugate showed that the three binding sites were all occupied by one sialic acid residue each.
Place, publisher, year, edition, pages
Umeå: Kemiska institutionen, Umeå universitet, 2010. p. 77
Keywords
Glycoconjugates, Carbohydrates, Galactose, Glucose, Solid-phase synthesis, SPOS, Glycosylation, Gel-phase 19F NMR spectroscopy, Fluorinated linker, Carbohydrate array, Microtiter plates, Carbohydrate-protein interactions, carbamate linker, Fsec, Protecting group, Fluorinated protecting group, Multivalent glycoconjugates, Adenovirus, Ad37, Epidemic keratoconjunctivitis, EKC, Sialic acid, Adenovirus inhibitor, Trivalent, Tetravalent, X-ray crystal structure
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:umu:diva-33841 (URN)978-91-7459-014-2 (ISBN)
Public defence
2010-06-04, KBC-huset, KB3B1, Umeå Universitet, Umeå, 10:00 (Swedish)
Opponent
Supervisors
2010-05-142010-05-072018-06-08Bibliographically approved