umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Semi-automatic tumour segmentation by selective navigation in a three-parameter volume, obtained by voxel-wise kinetic modelling of 11C-acetate
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
Visa övriga samt affilieringar
2010 (Engelska)Ingår i: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 139, nr 1-3, s. 214-218Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Positron emission tomography (PET) is increasingly used for delineation of tumour tissue in, for example, radiotherapy treatment planning. The most common method used is to outline volumes with a certain per cent uptake over background in a static image. However, PET data can also be collected dynamically and analysed by kinetic models, which potentially represent the underlying biology better. In the present study, a three-parameter kinetic model was used for voxel-wise evaluation of (11)C-acetate data of head/neck tumours. These parameters which represent the tumour blood volume, the uptake rate and the clearance rate of the tissue were derived for each voxel using a linear regression method and used for segmentation of active tumour tissue. This feasibility study shows that it is possible to segment images based on derived model parameters. There is, however, room for improvements concerning the PET data acquisition, noise reduction and the kinetic modelling. In conclusion, this early study indicates a strong potential of the method even though no 'true' tumour volume was available for validation.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2010. Vol. 139, nr 1-3, s. 214-218
Nationell ämneskategori
Medicinsk bildbehandling
Forskningsämne
radiofysik
Identifikatorer
URN: urn:nbn:se:umu:diva-34228DOI: 10.1093/rpd/ncq075ISI: 000277738200038PubMedID: 20200103OAI: oai:DiVA.org:umu-34228DiVA, id: diva2:320117
Tillgänglig från: 2010-05-21 Skapad: 2010-05-21 Senast uppdaterad: 2018-06-08Bibliografiskt granskad
Ingår i avhandling
1. Quantitative methods for tumor imaging with dynamic PET
Öppna denna publikation i ny flik eller fönster >>Quantitative methods for tumor imaging with dynamic PET
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Kvantitativa metoder för tumöravbildning med dynamisk PET
Abstract [en]

There is always a need and drive to improve modern cancer care. Dynamic positron emission tomography (PET) offers the advantage of in vivo functional imaging, combined with the ability to follow the physiological processes over time. In addition, by applying tracer kinetic modeling to the dynamic PET data, thus estimating pharmacokinetic parameters associated to e.g. glucose metabolism, cell proliferation etc., more information about the tissue's underlying biology and physiology can be determined. This supplementary information can potentially be a considerable aid when it comes to the segmentation, diagnosis, staging, treatment planning, early treatment response monitoring and follow-up of cancerous tumors.

We have found it feasible to use kinetic parameters for semi-automatic tumor segmentation, and found parametric images to have higher contrast compared to static PET uptake images. There are however many possible sources of errors and uncertainties in kinetic parameters obtained through compartment modeling of dynamic PET data. The variation in the number of detected photons caused by the random nature of radioactive decay, is of course always a major source. Other sources may include: the choice of an appropriate model that is suitable for the radiotracer in question, camera detectors and electronics, image acquisition protocol, image reconstruction algorithm with corrections (attenuation, random and scattered coincidences, detector uniformity, decay) and so on. We have found the early frame sampling scheme in dynamic PET to affect the bias and uncertainty in calculated kinetic parameters, and that scatter corrections are necessary for most but not all parameter estimates. Furthermore, analytical image reconstruction algorithms seem more suited for compartment modeling applications compared to iterative algorithms.

This thesis and included papers show potential applications and tools for quantitative pharmacokinetic parameters in oncology, and help understand errors and uncertainties associated with them. The aim is to contribute to the long-term goal of enabling the use of dynamic PET and pharmacokinetic parameters for improvements of today's cancer care.

Abstract [sv]

Det finns alltid ett behov och en strävan att förbättra dagens cancervård. Dynamisk positronemissionstomografi (PET) medför fördelen av in vivo funktionell avbilning, kombinerad med möjligheten att följa fysiologiska processer över tiden. Genom att därtill tillämpa kinetisk modellering på det dynamiska PET-datat, och därigenom skatta farmakokinetiska parametrar associerade till glukosmetabolism, cellproliferation etc., kan ytterligare information om vävnadens underliggande biologi och fysiologi bestämmas. Denna kompletterande information kan potentiellt vara till stor nytta för segmentering, diagnos, stadieindelning, behandlingsplanering, monitorering av tidig behandlingsrespons samt uppföljning av cancertumörer.

Vi fann det möjligt att använda kinetiska parametrar för semi-automatisk tumörsegmentering, och fann även att parametriska bilder hade högre kontrast jämfört med upptagsbilder från statisk PET. Det finns dock många möjliga källor till osäkerheter och fel i kinetiska parametrar som beräknats genom compartment-modellering av dynamisk PET. En av de största källorna är det radioaktiva sönderfallets slumpmässiga natur som orsakar variationer i antalet detekterade fotoner. Andra källor inkluderar valet av compartment-modell som är lämplig för den aktuella radiotracern, PET-kamerans detektorer och elektronik, bildtagningsprotokoll, bildrekonstruktionsalgoritm med tillhörande korrektioner (attenuering, slumpmässig och spridd strålning, detektorernas likformighet, sönderfall) och så vidare. Vi fann att tidssamplingsschemat för tidiga bilder i dynamisk PET påverkar både fel och osäkerhet i beräknade kinetiska parametrar, och att bildkorrektioner för spridd strålning är nödvändigt för de flesta men inte alla parametrar. Utöver detta verkar analytiska bildrekonstruktionsalgoritmer vara bättre lämpade för tillämpningar som innefattar compartment-modellering i jämförelse med iterativa algoritmer.

Denna avhandling med inkluderade artiklar visar möjliga tillämpningar och verktyg för kvantitativa kinetiska parametrar inom onkologiområdet. Den bidrar också till förståelsen av fel och osäkerheter associerade till dem. Syftet är att bidra till det långsiktiga målet att möjliggöra användandet av dynamisk PET och farmakokinetiska parametrar för att förbättra dagens cancervård.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå Universitet, 2014. s. 94
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 1683
Nyckelord
Dynamic positron emission tomography, PET, tumor imaging, compartment modeling, Monte Carlo
Nationell ämneskategori
Medicinsk bildbehandling Annan fysik
Forskningsämne
radiofysik
Identifikatorer
urn:nbn:se:umu:diva-95126 (URN)978-91-7601-160-7 (ISBN)
Disputation
2014-12-12, Hörsal Betula, Norrlands Universitetssjukhus, Umeå, 09:00 (Svenska)
Opponent
Handledare
Forskningsfinansiär
Swedish National Infrastructure for Computing (SNIC), HPC2N-2009-001Swedish National Infrastructure for Computing (SNIC), 2013/1-234Swedish National Infrastructure for Computing (SNIC), 2014/1-260
Tillgänglig från: 2014-11-21 Skapad: 2014-10-22 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Häggström, IdaJohansson, LennartLarsson, AnneÖstlund, NilsKarlsson, Mikael

Sök vidare i DiVA

Av författaren/redaktören
Häggström, IdaJohansson, LennartLarsson, AnneÖstlund, NilsKarlsson, Mikael
Av organisationen
Radiofysik
I samma tidskrift
Radiation Protection Dosimetry
Medicinsk bildbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 304 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf