umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Molecular Stratification of Clear Cell Renal Cell Carcinoma by Consensus Clustering Reveals Distinct Subtypes and Survival Patterns.
Visa övriga samt affilieringar
2010 (Engelska)Ingår i: Genes & cancer, ISSN 1947-6027, Vol. 1, nr 2, s. 152-163Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Clear cell renal cell carcinoma (ccRCC) is the predominant RCC subtype, but even within this classification, the natural history is heterogeneous and difficult to predict. A sophisticated understanding of the molecular features most discriminatory for the underlying tumor heterogeneity should be predicated on identifiable and biologically meaningful patterns of gene expression. Gene expression microarray data were analyzed using software that implements iterative unsupervised consensus clustering algorithms to identify the optimal molecular subclasses, without clinical or other classifying information. ConsensusCluster analysis identified two distinct subtypes of ccRCC within the training set, designated clear cell type A (ccA) and B (ccB). Based on the core tumors, or most well-defined arrays, in each subtype, logical analysis of data (LAD) defined a small, highly predictive gene set that could then be used to classify additional tumors individually. The subclasses were corroborated in a validation data set of 177 tumors and analyzed for clinical outcome. Based on individual tumor assignment, tumors designated ccA have markedly improved disease-specific survival compared to ccB (median survival of 8.6 vs 2.0 years, P = 0.002). Analyzed by both univariate and multivariate analysis, the classification schema was independently associated with survival. Using patterns of gene expression based on a defined gene set, ccRCC was classified into two robust subclasses based on inherent molecular features that ultimately correspond to marked differences in clinical outcome. This classification schema thus provides a molecular stratification applicable to individual tumors that has implications to influence treatment decisions, define biological mechanisms involved in ccRCC tumor progression, and direct future drug discovery.

Ort, förlag, år, upplaga, sidor
Sage , 2010. Vol. 1, nr 2, s. 152-163
Nyckelord [en]
ccRCC, microarray, gene expression profiling, molecular signatures, survival, PCA, robust clustering, logical analysis of data, LAD, ConsensusCluster
Nationell ämneskategori
Cancer och onkologi
Identifikatorer
URN: urn:nbn:se:umu:diva-42265DOI: 10.1177/1947601909359929PubMedID: 20871783OAI: oai:DiVA.org:umu-42265DiVA, id: diva2:408992
Tillgänglig från: 2011-04-06 Skapad: 2011-04-06 Senast uppdaterad: 2018-06-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Ljungberg, Börje

Sök vidare i DiVA

Av författaren/redaktören
Ljungberg, Börje
Av organisationen
Urologi och andrologi
Cancer och onkologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 147 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf